|
from math import floor, log, pi |
|
from typing import Any, List, Optional, Sequence, Tuple, Union |
|
|
|
from .utils import * |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange, reduce, repeat |
|
from einops.layers.torch import Rearrange |
|
from einops_exts import rearrange_many |
|
from torch import Tensor, einsum |
|
|
|
|
|
""" |
|
Utils |
|
""" |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
def __init__(self, style_dim, channels, eps=1e-5): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.fc = nn.Linear(style_dim, channels * 2) |
|
|
|
def forward(self, x, s): |
|
x = x.transpose(-1, -2) |
|
x = x.transpose(1, -1) |
|
|
|
h = self.fc(s) |
|
h = h.view(h.size(0), h.size(1), 1) |
|
gamma, beta = torch.chunk(h, chunks=2, dim=1) |
|
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) |
|
|
|
x = F.layer_norm(x, (self.channels,), eps=self.eps) |
|
x = (1 + gamma) * x + beta |
|
return x.transpose(1, -1).transpose(-1, -2) |
|
|
|
|
|
class StyleTransformer1d(nn.Module): |
|
def __init__( |
|
self, |
|
num_layers: int, |
|
channels: int, |
|
num_heads: int, |
|
head_features: int, |
|
multiplier: int, |
|
use_context_time: bool = True, |
|
use_rel_pos: bool = False, |
|
context_features_multiplier: int = 1, |
|
rel_pos_num_buckets: Optional[int] = None, |
|
rel_pos_max_distance: Optional[int] = None, |
|
context_features: Optional[int] = None, |
|
context_embedding_features: Optional[int] = None, |
|
embedding_max_length: int = 512, |
|
): |
|
super().__init__() |
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
StyleTransformerBlock( |
|
features=channels + context_embedding_features, |
|
head_features=head_features, |
|
num_heads=num_heads, |
|
multiplier=multiplier, |
|
style_dim=context_features, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
for i in range(num_layers) |
|
] |
|
) |
|
|
|
self.to_out = nn.Sequential( |
|
Rearrange("b t c -> b c t"), |
|
nn.Conv1d( |
|
in_channels=channels + context_embedding_features, |
|
out_channels=channels, |
|
kernel_size=1, |
|
), |
|
) |
|
|
|
use_context_features = exists(context_features) |
|
self.use_context_features = use_context_features |
|
self.use_context_time = use_context_time |
|
|
|
if use_context_time or use_context_features: |
|
context_mapping_features = channels + context_embedding_features |
|
|
|
self.to_mapping = nn.Sequential( |
|
nn.Linear(context_mapping_features, context_mapping_features), |
|
nn.GELU(), |
|
nn.Linear(context_mapping_features, context_mapping_features), |
|
nn.GELU(), |
|
) |
|
|
|
if use_context_time: |
|
assert exists(context_mapping_features) |
|
self.to_time = nn.Sequential( |
|
TimePositionalEmbedding( |
|
dim=channels, out_features=context_mapping_features |
|
), |
|
nn.GELU(), |
|
) |
|
|
|
if use_context_features: |
|
assert exists(context_features) and exists(context_mapping_features) |
|
self.to_features = nn.Sequential( |
|
nn.Linear( |
|
in_features=context_features, out_features=context_mapping_features |
|
), |
|
nn.GELU(), |
|
) |
|
|
|
self.fixed_embedding = FixedEmbedding( |
|
max_length=embedding_max_length, features=context_embedding_features |
|
) |
|
|
|
def get_mapping( |
|
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None |
|
) -> Optional[Tensor]: |
|
"""Combines context time features and features into mapping""" |
|
items, mapping = [], None |
|
|
|
if self.use_context_time: |
|
assert_message = "use_context_time=True but no time features provided" |
|
assert exists(time), assert_message |
|
items += [self.to_time(time)] |
|
|
|
if self.use_context_features: |
|
assert_message = "context_features exists but no features provided" |
|
assert exists(features), assert_message |
|
items += [self.to_features(features)] |
|
|
|
|
|
if self.use_context_time or self.use_context_features: |
|
mapping = reduce(torch.stack(items), "n b m -> b m", "sum") |
|
mapping = self.to_mapping(mapping) |
|
|
|
return mapping |
|
|
|
def run(self, x, time, embedding, features): |
|
mapping = self.get_mapping(time, features) |
|
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1) |
|
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1) |
|
|
|
for block in self.blocks: |
|
x = x + mapping |
|
x = block(x, features) |
|
|
|
x = x.mean(axis=1).unsqueeze(1) |
|
x = self.to_out(x) |
|
x = x.transpose(-1, -2) |
|
|
|
return x |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
time: Tensor, |
|
embedding_mask_proba: float = 0.0, |
|
embedding: Optional[Tensor] = None, |
|
features: Optional[Tensor] = None, |
|
embedding_scale: float = 1.0, |
|
) -> Tensor: |
|
b, device = embedding.shape[0], embedding.device |
|
fixed_embedding = self.fixed_embedding(embedding) |
|
if embedding_mask_proba > 0.0: |
|
|
|
batch_mask = rand_bool( |
|
shape=(b, 1, 1), proba=embedding_mask_proba, device=device |
|
) |
|
embedding = torch.where(batch_mask, fixed_embedding, embedding) |
|
|
|
if embedding_scale != 1.0: |
|
|
|
out = self.run(x, time, embedding=embedding, features=features) |
|
out_masked = self.run(x, time, embedding=fixed_embedding, features=features) |
|
|
|
return out_masked + (out - out_masked) * embedding_scale |
|
else: |
|
return self.run(x, time, embedding=embedding, features=features) |
|
|
|
return x |
|
|
|
|
|
class StyleTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
features: int, |
|
num_heads: int, |
|
head_features: int, |
|
style_dim: int, |
|
multiplier: int, |
|
use_rel_pos: bool, |
|
rel_pos_num_buckets: Optional[int] = None, |
|
rel_pos_max_distance: Optional[int] = None, |
|
context_features: Optional[int] = None, |
|
): |
|
super().__init__() |
|
|
|
self.use_cross_attention = exists(context_features) and context_features > 0 |
|
|
|
self.attention = StyleAttention( |
|
features=features, |
|
style_dim=style_dim, |
|
num_heads=num_heads, |
|
head_features=head_features, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
|
|
if self.use_cross_attention: |
|
self.cross_attention = StyleAttention( |
|
features=features, |
|
style_dim=style_dim, |
|
num_heads=num_heads, |
|
head_features=head_features, |
|
context_features=context_features, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
|
|
self.feed_forward = FeedForward(features=features, multiplier=multiplier) |
|
|
|
def forward( |
|
self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None |
|
) -> Tensor: |
|
x = self.attention(x, s) + x |
|
if self.use_cross_attention: |
|
x = self.cross_attention(x, s, context=context) + x |
|
x = self.feed_forward(x) + x |
|
return x |
|
|
|
|
|
class StyleAttention(nn.Module): |
|
def __init__( |
|
self, |
|
features: int, |
|
*, |
|
style_dim: int, |
|
head_features: int, |
|
num_heads: int, |
|
context_features: Optional[int] = None, |
|
use_rel_pos: bool, |
|
rel_pos_num_buckets: Optional[int] = None, |
|
rel_pos_max_distance: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.context_features = context_features |
|
mid_features = head_features * num_heads |
|
context_features = default(context_features, features) |
|
|
|
self.norm = AdaLayerNorm(style_dim, features) |
|
self.norm_context = AdaLayerNorm(style_dim, context_features) |
|
self.to_q = nn.Linear( |
|
in_features=features, out_features=mid_features, bias=False |
|
) |
|
self.to_kv = nn.Linear( |
|
in_features=context_features, out_features=mid_features * 2, bias=False |
|
) |
|
self.attention = AttentionBase( |
|
features, |
|
num_heads=num_heads, |
|
head_features=head_features, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
|
|
def forward( |
|
self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None |
|
) -> Tensor: |
|
assert_message = "You must provide a context when using context_features" |
|
assert not self.context_features or exists(context), assert_message |
|
|
|
context = default(context, x) |
|
|
|
x, context = self.norm(x, s), self.norm_context(context, s) |
|
|
|
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1)) |
|
|
|
return self.attention(q, k, v) |
|
|
|
|
|
class Transformer1d(nn.Module): |
|
def __init__( |
|
self, |
|
num_layers: int, |
|
channels: int, |
|
num_heads: int, |
|
head_features: int, |
|
multiplier: int, |
|
use_context_time: bool = True, |
|
use_rel_pos: bool = False, |
|
context_features_multiplier: int = 1, |
|
rel_pos_num_buckets: Optional[int] = None, |
|
rel_pos_max_distance: Optional[int] = None, |
|
context_features: Optional[int] = None, |
|
context_embedding_features: Optional[int] = None, |
|
embedding_max_length: int = 512, |
|
): |
|
super().__init__() |
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
TransformerBlock( |
|
features=channels + context_embedding_features, |
|
head_features=head_features, |
|
num_heads=num_heads, |
|
multiplier=multiplier, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
for i in range(num_layers) |
|
] |
|
) |
|
|
|
self.to_out = nn.Sequential( |
|
Rearrange("b t c -> b c t"), |
|
nn.Conv1d( |
|
in_channels=channels + context_embedding_features, |
|
out_channels=channels, |
|
kernel_size=1, |
|
), |
|
) |
|
|
|
use_context_features = exists(context_features) |
|
self.use_context_features = use_context_features |
|
self.use_context_time = use_context_time |
|
|
|
if use_context_time or use_context_features: |
|
context_mapping_features = channels + context_embedding_features |
|
|
|
self.to_mapping = nn.Sequential( |
|
nn.Linear(context_mapping_features, context_mapping_features), |
|
nn.GELU(), |
|
nn.Linear(context_mapping_features, context_mapping_features), |
|
nn.GELU(), |
|
) |
|
|
|
if use_context_time: |
|
assert exists(context_mapping_features) |
|
self.to_time = nn.Sequential( |
|
TimePositionalEmbedding( |
|
dim=channels, out_features=context_mapping_features |
|
), |
|
nn.GELU(), |
|
) |
|
|
|
if use_context_features: |
|
assert exists(context_features) and exists(context_mapping_features) |
|
self.to_features = nn.Sequential( |
|
nn.Linear( |
|
in_features=context_features, out_features=context_mapping_features |
|
), |
|
nn.GELU(), |
|
) |
|
|
|
self.fixed_embedding = FixedEmbedding( |
|
max_length=embedding_max_length, features=context_embedding_features |
|
) |
|
|
|
def get_mapping( |
|
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None |
|
) -> Optional[Tensor]: |
|
"""Combines context time features and features into mapping""" |
|
items, mapping = [], None |
|
|
|
if self.use_context_time: |
|
assert_message = "use_context_time=True but no time features provided" |
|
assert exists(time), assert_message |
|
items += [self.to_time(time)] |
|
|
|
if self.use_context_features: |
|
assert_message = "context_features exists but no features provided" |
|
assert exists(features), assert_message |
|
items += [self.to_features(features)] |
|
|
|
|
|
if self.use_context_time or self.use_context_features: |
|
mapping = reduce(torch.stack(items), "n b m -> b m", "sum") |
|
mapping = self.to_mapping(mapping) |
|
|
|
return mapping |
|
|
|
def run(self, x, time, embedding, features): |
|
mapping = self.get_mapping(time, features) |
|
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1) |
|
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1) |
|
|
|
for block in self.blocks: |
|
x = x + mapping |
|
x = block(x) |
|
|
|
x = x.mean(axis=1).unsqueeze(1) |
|
x = self.to_out(x) |
|
x = x.transpose(-1, -2) |
|
|
|
return x |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
time: Tensor, |
|
embedding_mask_proba: float = 0.0, |
|
embedding: Optional[Tensor] = None, |
|
features: Optional[Tensor] = None, |
|
embedding_scale: float = 1.0, |
|
) -> Tensor: |
|
b, device = embedding.shape[0], embedding.device |
|
fixed_embedding = self.fixed_embedding(embedding) |
|
if embedding_mask_proba > 0.0: |
|
|
|
batch_mask = rand_bool( |
|
shape=(b, 1, 1), proba=embedding_mask_proba, device=device |
|
) |
|
embedding = torch.where(batch_mask, fixed_embedding, embedding) |
|
|
|
if embedding_scale != 1.0: |
|
|
|
out = self.run(x, time, embedding=embedding, features=features) |
|
out_masked = self.run(x, time, embedding=fixed_embedding, features=features) |
|
|
|
return out_masked + (out - out_masked) * embedding_scale |
|
else: |
|
return self.run(x, time, embedding=embedding, features=features) |
|
|
|
return x |
|
|
|
|
|
""" |
|
Attention Components |
|
""" |
|
|
|
|
|
class RelativePositionBias(nn.Module): |
|
def __init__(self, num_buckets: int, max_distance: int, num_heads: int): |
|
super().__init__() |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
self.num_heads = num_heads |
|
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket( |
|
relative_position: Tensor, num_buckets: int, max_distance: int |
|
): |
|
num_buckets //= 2 |
|
ret = (relative_position >= 0).to(torch.long) * num_buckets |
|
n = torch.abs(relative_position) |
|
|
|
max_exact = num_buckets // 2 |
|
is_small = n < max_exact |
|
|
|
val_if_large = ( |
|
max_exact |
|
+ ( |
|
torch.log(n.float() / max_exact) |
|
/ log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).long() |
|
) |
|
val_if_large = torch.min( |
|
val_if_large, torch.full_like(val_if_large, num_buckets - 1) |
|
) |
|
|
|
ret += torch.where(is_small, n, val_if_large) |
|
return ret |
|
|
|
def forward(self, num_queries: int, num_keys: int) -> Tensor: |
|
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device |
|
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device) |
|
k_pos = torch.arange(j, dtype=torch.long, device=device) |
|
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1") |
|
|
|
relative_position_bucket = self._relative_position_bucket( |
|
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance |
|
) |
|
|
|
bias = self.relative_attention_bias(relative_position_bucket) |
|
bias = rearrange(bias, "m n h -> 1 h m n") |
|
return bias |
|
|
|
|
|
def FeedForward(features: int, multiplier: int) -> nn.Module: |
|
mid_features = features * multiplier |
|
return nn.Sequential( |
|
nn.Linear(in_features=features, out_features=mid_features), |
|
nn.GELU(), |
|
nn.Linear(in_features=mid_features, out_features=features), |
|
) |
|
|
|
|
|
class AttentionBase(nn.Module): |
|
def __init__( |
|
self, |
|
features: int, |
|
*, |
|
head_features: int, |
|
num_heads: int, |
|
use_rel_pos: bool, |
|
out_features: Optional[int] = None, |
|
rel_pos_num_buckets: Optional[int] = None, |
|
rel_pos_max_distance: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.scale = head_features**-0.5 |
|
self.num_heads = num_heads |
|
self.use_rel_pos = use_rel_pos |
|
mid_features = head_features * num_heads |
|
|
|
if use_rel_pos: |
|
assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance) |
|
self.rel_pos = RelativePositionBias( |
|
num_buckets=rel_pos_num_buckets, |
|
max_distance=rel_pos_max_distance, |
|
num_heads=num_heads, |
|
) |
|
if out_features is None: |
|
out_features = features |
|
|
|
self.to_out = nn.Linear(in_features=mid_features, out_features=out_features) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: |
|
|
|
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads) |
|
|
|
sim = einsum("... n d, ... m d -> ... n m", q, k) |
|
sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim |
|
sim = sim * self.scale |
|
|
|
attn = sim.softmax(dim=-1) |
|
|
|
out = einsum("... n m, ... m d -> ... n d", attn, v) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
return self.to_out(out) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
features: int, |
|
*, |
|
head_features: int, |
|
num_heads: int, |
|
out_features: Optional[int] = None, |
|
context_features: Optional[int] = None, |
|
use_rel_pos: bool, |
|
rel_pos_num_buckets: Optional[int] = None, |
|
rel_pos_max_distance: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.context_features = context_features |
|
mid_features = head_features * num_heads |
|
context_features = default(context_features, features) |
|
|
|
self.norm = nn.LayerNorm(features) |
|
self.norm_context = nn.LayerNorm(context_features) |
|
self.to_q = nn.Linear( |
|
in_features=features, out_features=mid_features, bias=False |
|
) |
|
self.to_kv = nn.Linear( |
|
in_features=context_features, out_features=mid_features * 2, bias=False |
|
) |
|
|
|
self.attention = AttentionBase( |
|
features, |
|
out_features=out_features, |
|
num_heads=num_heads, |
|
head_features=head_features, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
|
|
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor: |
|
assert_message = "You must provide a context when using context_features" |
|
assert not self.context_features or exists(context), assert_message |
|
|
|
context = default(context, x) |
|
|
|
x, context = self.norm(x), self.norm_context(context) |
|
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1)) |
|
|
|
return self.attention(q, k, v) |
|
|
|
|
|
""" |
|
Transformer Blocks |
|
""" |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
features: int, |
|
num_heads: int, |
|
head_features: int, |
|
multiplier: int, |
|
use_rel_pos: bool, |
|
rel_pos_num_buckets: Optional[int] = None, |
|
rel_pos_max_distance: Optional[int] = None, |
|
context_features: Optional[int] = None, |
|
): |
|
super().__init__() |
|
|
|
self.use_cross_attention = exists(context_features) and context_features > 0 |
|
|
|
self.attention = Attention( |
|
features=features, |
|
num_heads=num_heads, |
|
head_features=head_features, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
|
|
if self.use_cross_attention: |
|
self.cross_attention = Attention( |
|
features=features, |
|
num_heads=num_heads, |
|
head_features=head_features, |
|
context_features=context_features, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_num_buckets=rel_pos_num_buckets, |
|
rel_pos_max_distance=rel_pos_max_distance, |
|
) |
|
|
|
self.feed_forward = FeedForward(features=features, multiplier=multiplier) |
|
|
|
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor: |
|
x = self.attention(x) + x |
|
if self.use_cross_attention: |
|
x = self.cross_attention(x, context=context) + x |
|
x = self.feed_forward(x) + x |
|
return x |
|
|
|
|
|
""" |
|
Time Embeddings |
|
""" |
|
|
|
|
|
class SinusoidalEmbedding(nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.dim = dim |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
device, half_dim = x.device, self.dim // 2 |
|
emb = torch.tensor(log(10000) / (half_dim - 1), device=device) |
|
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) |
|
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j") |
|
return torch.cat((emb.sin(), emb.cos()), dim=-1) |
|
|
|
|
|
class LearnedPositionalEmbedding(nn.Module): |
|
"""Used for continuous time""" |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
assert (dim % 2) == 0 |
|
half_dim = dim // 2 |
|
self.weights = nn.Parameter(torch.randn(half_dim)) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = rearrange(x, "b -> b 1") |
|
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi |
|
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) |
|
fouriered = torch.cat((x, fouriered), dim=-1) |
|
return fouriered |
|
|
|
|
|
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module: |
|
return nn.Sequential( |
|
LearnedPositionalEmbedding(dim), |
|
nn.Linear(in_features=dim + 1, out_features=out_features), |
|
) |
|
|
|
|
|
class FixedEmbedding(nn.Module): |
|
def __init__(self, max_length: int, features: int): |
|
super().__init__() |
|
self.max_length = max_length |
|
self.embedding = nn.Embedding(max_length, features) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
batch_size, length, device = *x.shape[0:2], x.device |
|
assert_message = "Input sequence length must be <= max_length" |
|
assert length <= self.max_length, assert_message |
|
position = torch.arange(length, device=device) |
|
fixed_embedding = self.embedding(position) |
|
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size) |
|
return fixed_embedding |
|
|