|
from cached_path import cached_path |
|
|
|
|
|
import torch |
|
torch.manual_seed(0) |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cudnn.deterministic = True |
|
|
|
import random |
|
random.seed(0) |
|
|
|
import numpy as np |
|
np.random.seed(0) |
|
|
|
import nltk |
|
nltk.download('punkt') |
|
|
|
|
|
import time |
|
import random |
|
import yaml |
|
from munch import Munch |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import librosa |
|
from nltk.tokenize import word_tokenize |
|
|
|
from models import * |
|
from utils import * |
|
from text_utils import TextCleaner |
|
textclenaer = TextCleaner() |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
to_mel = torchaudio.transforms.MelSpectrogram( |
|
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) |
|
mean, std = -4, 4 |
|
|
|
def length_to_mask(lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
def preprocess(wave): |
|
wave_tensor = torch.from_numpy(wave).float() |
|
mel_tensor = to_mel(wave_tensor) |
|
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std |
|
return mel_tensor |
|
|
|
def compute_style(ref_dicts): |
|
reference_embeddings = {} |
|
for key, path in ref_dicts.items(): |
|
wave, sr = librosa.load(path, sr=24000) |
|
audio, index = librosa.effects.trim(wave, top_db=30) |
|
if sr != 24000: |
|
audio = librosa.resample(audio, sr, 24000) |
|
mel_tensor = preprocess(audio).to(device) |
|
|
|
with torch.no_grad(): |
|
ref = model.style_encoder(mel_tensor.unsqueeze(1)) |
|
reference_embeddings[key] = (ref.squeeze(1), audio) |
|
|
|
return reference_embeddings |
|
|
|
|
|
import phonemizer |
|
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True, words_mismatch='ignore') |
|
|
|
|
|
|
|
|
|
config = yaml.safe_load(open(str(cached_path('hf://yl4579/StyleTTS2-LJSpeech/Models/LJSpeech/config.yml')))) |
|
|
|
|
|
ASR_config = config.get('ASR_config', False) |
|
ASR_path = config.get('ASR_path', False) |
|
text_aligner = load_ASR_models(ASR_path, ASR_config) |
|
|
|
|
|
F0_path = config.get('F0_path', False) |
|
pitch_extractor = load_F0_models(F0_path) |
|
|
|
|
|
from Utils.PLBERT.util import load_plbert |
|
BERT_path = config.get('PLBERT_dir', False) |
|
plbert = load_plbert(BERT_path) |
|
|
|
model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert) |
|
_ = [model[key].eval() for key in model] |
|
_ = [model[key].to(device) for key in model] |
|
|
|
|
|
params_whole = torch.load(str(cached_path('hf://yl4579/StyleTTS2-LJSpeech/Models/LJSpeech/epoch_2nd_00100.pth')), map_location='cpu') |
|
params = params_whole['net'] |
|
|
|
for key in model: |
|
if key in params: |
|
print('%s loaded' % key) |
|
try: |
|
model[key].load_state_dict(params[key]) |
|
except: |
|
from collections import OrderedDict |
|
state_dict = params[key] |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
|
|
model[key].load_state_dict(new_state_dict, strict=False) |
|
|
|
|
|
_ = [model[key].eval() for key in model] |
|
|
|
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule |
|
|
|
sampler = DiffusionSampler( |
|
model.diffusion.diffusion, |
|
sampler=ADPM2Sampler(), |
|
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), |
|
clamp=False |
|
) |
|
|
|
def inference(text, noise, diffusion_steps=5, embedding_scale=1): |
|
text = text.strip() |
|
text = text.replace('"', '') |
|
ps = global_phonemizer.phonemize([text]) |
|
ps = word_tokenize(ps[0]) |
|
ps = ' '.join(ps) |
|
|
|
tokens = textclenaer(ps) |
|
tokens.insert(0, 0) |
|
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device) |
|
text_mask = length_to_mask(input_lengths).to(tokens.device) |
|
|
|
t_en = model.text_encoder(tokens, input_lengths, text_mask) |
|
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) |
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) |
|
|
|
s_pred = sampler(noise, |
|
embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps, |
|
embedding_scale=embedding_scale).squeeze(0) |
|
|
|
s = s_pred[:, 128:] |
|
ref = s_pred[:, :128] |
|
|
|
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) |
|
|
|
x, _ = model.predictor.lstm(d) |
|
duration = model.predictor.duration_proj(x) |
|
duration = torch.sigmoid(duration).sum(axis=-1) |
|
pred_dur = torch.round(duration.squeeze()).clamp(min=1) |
|
|
|
pred_dur[-1] += 5 |
|
|
|
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) |
|
c_frame = 0 |
|
for i in range(pred_aln_trg.size(0)): |
|
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 |
|
c_frame += int(pred_dur[i].data) |
|
|
|
|
|
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) |
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) |
|
out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)), |
|
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) |
|
|
|
return out.squeeze().cpu().numpy() |
|
|
|
def LFinference(text, s_prev, noise, alpha=0.7, diffusion_steps=5, embedding_scale=1): |
|
text = text.strip() |
|
text = text.replace('"', '') |
|
ps = global_phonemizer.phonemize([text]) |
|
ps = word_tokenize(ps[0]) |
|
ps = ' '.join(ps) |
|
|
|
tokens = textclenaer(ps) |
|
tokens.insert(0, 0) |
|
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device) |
|
text_mask = length_to_mask(input_lengths).to(tokens.device) |
|
|
|
t_en = model.text_encoder(tokens, input_lengths, text_mask) |
|
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) |
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) |
|
|
|
s_pred = sampler(noise, |
|
embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps, |
|
embedding_scale=embedding_scale).squeeze(0) |
|
|
|
if s_prev is not None: |
|
|
|
s_pred = alpha * s_prev + (1 - alpha) * s_pred |
|
|
|
s = s_pred[:, 128:] |
|
ref = s_pred[:, :128] |
|
|
|
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) |
|
|
|
x, _ = model.predictor.lstm(d) |
|
duration = model.predictor.duration_proj(x) |
|
duration = torch.sigmoid(duration).sum(axis=-1) |
|
pred_dur = torch.round(duration.squeeze()).clamp(min=1) |
|
|
|
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) |
|
c_frame = 0 |
|
for i in range(pred_aln_trg.size(0)): |
|
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 |
|
c_frame += int(pred_dur[i].data) |
|
|
|
|
|
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) |
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) |
|
out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)), |
|
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) |
|
|
|
return out.squeeze().cpu().numpy(), s_pred |