|
from cached_path import cached_path |
|
|
|
|
|
print("NLTK") |
|
import nltk |
|
nltk.download('punkt') |
|
print("SCIPY") |
|
from scipy.io.wavfile import write |
|
print("TORCH STUFF") |
|
import torch |
|
print("START") |
|
torch.manual_seed(0) |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cudnn.deterministic = True |
|
|
|
import random |
|
random.seed(0) |
|
|
|
import numpy as np |
|
np.random.seed(0) |
|
|
|
|
|
import time |
|
import random |
|
import yaml |
|
from munch import Munch |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import librosa |
|
from nltk.tokenize import word_tokenize |
|
|
|
from models import * |
|
from utils import * |
|
from text_utils import TextCleaner |
|
textclenaer = TextCleaner() |
|
|
|
|
|
to_mel = torchaudio.transforms.MelSpectrogram( |
|
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) |
|
mean, std = -4, 4 |
|
|
|
def length_to_mask(lengths): |
|
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) |
|
mask = torch.gt(mask+1, lengths.unsqueeze(1)) |
|
return mask |
|
|
|
def preprocess(wave): |
|
wave_tensor = torch.from_numpy(wave).float() |
|
mel_tensor = to_mel(wave_tensor) |
|
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std |
|
return mel_tensor |
|
|
|
def compute_style(path): |
|
wave, sr = librosa.load(path, sr=24000) |
|
audio, index = librosa.effects.trim(wave, top_db=30) |
|
if sr != 24000: |
|
audio = librosa.resample(audio, sr, 24000) |
|
mel_tensor = preprocess(audio).to(device) |
|
|
|
with torch.no_grad(): |
|
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) |
|
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) |
|
|
|
return torch.cat([ref_s, ref_p], dim=1) |
|
|
|
device = 'cpu' |
|
if torch.cuda.is_available(): |
|
device = 'cuda' |
|
elif torch.backends.mps.is_available(): |
|
print("MPS would be available but cannot be used rn") |
|
|
|
|
|
|
|
|
|
|
|
config = yaml.safe_load(open(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/config.yml")))) |
|
|
|
|
|
ASR_config = config.get('ASR_config', False) |
|
ASR_path = config.get('ASR_path', False) |
|
text_aligner = load_ASR_models(ASR_path, ASR_config) |
|
|
|
|
|
F0_path = config.get('F0_path', False) |
|
pitch_extractor = load_F0_models(F0_path) |
|
|
|
|
|
from Utils.PLBERT.util import load_plbert |
|
BERT_path = config.get('PLBERT_dir', False) |
|
plbert = load_plbert(BERT_path) |
|
|
|
model_params = recursive_munch(config['model_params']) |
|
model = build_model(model_params, text_aligner, pitch_extractor, plbert) |
|
_ = [model[key].eval() for key in model] |
|
_ = [model[key].to(device) for key in model] |
|
|
|
|
|
params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu') |
|
params = params_whole['net'] |
|
|
|
for key in model: |
|
if key in params: |
|
print('%s loaded' % key) |
|
try: |
|
model[key].load_state_dict(params[key]) |
|
except: |
|
from collections import OrderedDict |
|
state_dict = params[key] |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
|
|
model[key].load_state_dict(new_state_dict, strict=False) |
|
|
|
|
|
_ = [model[key].eval() for key in model] |
|
|
|
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule |
|
|
|
sampler = DiffusionSampler( |
|
model.diffusion.diffusion, |
|
sampler=ADPM2Sampler(), |
|
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), |
|
clamp=False |
|
) |
|
voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4'] |
|
voices = {} |
|
|
|
for v in voicelist: |
|
print(f"Loading voice {v}") |
|
voices[v] = compute_style(f'voices/{v}.wav') |
|
import pickle |
|
with open('voices.pkl', 'wb') as f: |
|
pickle.dump(voices, f) |