|
from math import atan, cos, pi, sin, sqrt |
|
from typing import Any, Callable, List, Optional, Tuple, Type |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, reduce |
|
from torch import Tensor |
|
|
|
from .utils import * |
|
|
|
""" |
|
Diffusion Training |
|
""" |
|
|
|
""" Distributions """ |
|
|
|
|
|
class Distribution: |
|
def __call__(self, num_samples: int, device: torch.device): |
|
raise NotImplementedError() |
|
|
|
|
|
class LogNormalDistribution(Distribution): |
|
def __init__(self, mean: float, std: float): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__( |
|
self, num_samples: int, device: torch.device = torch.device("cpu") |
|
) -> Tensor: |
|
normal = self.mean + self.std * torch.randn((num_samples,), device=device) |
|
return normal.exp() |
|
|
|
|
|
class UniformDistribution(Distribution): |
|
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")): |
|
return torch.rand(num_samples, device=device) |
|
|
|
|
|
class VKDistribution(Distribution): |
|
def __init__( |
|
self, |
|
min_value: float = 0.0, |
|
max_value: float = float("inf"), |
|
sigma_data: float = 1.0, |
|
): |
|
self.min_value = min_value |
|
self.max_value = max_value |
|
self.sigma_data = sigma_data |
|
|
|
def __call__( |
|
self, num_samples: int, device: torch.device = torch.device("cpu") |
|
) -> Tensor: |
|
sigma_data = self.sigma_data |
|
min_cdf = atan(self.min_value / sigma_data) * 2 / pi |
|
max_cdf = atan(self.max_value / sigma_data) * 2 / pi |
|
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf |
|
return torch.tan(u * pi / 2) * sigma_data |
|
|
|
|
|
""" Diffusion Classes """ |
|
|
|
|
|
def pad_dims(x: Tensor, ndim: int) -> Tensor: |
|
|
|
return x.view(*x.shape, *((1,) * ndim)) |
|
|
|
|
|
def clip(x: Tensor, dynamic_threshold: float = 0.0): |
|
if dynamic_threshold == 0.0: |
|
return x.clamp(-1.0, 1.0) |
|
else: |
|
|
|
|
|
x_flat = rearrange(x, "b ... -> b (...)") |
|
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1) |
|
|
|
scale.clamp_(min=1.0) |
|
|
|
scale = pad_dims(scale, ndim=x.ndim - scale.ndim) |
|
x = x.clamp(-scale, scale) / scale |
|
return x |
|
|
|
|
|
def to_batch( |
|
batch_size: int, |
|
device: torch.device, |
|
x: Optional[float] = None, |
|
xs: Optional[Tensor] = None, |
|
) -> Tensor: |
|
assert exists(x) ^ exists(xs), "Either x or xs must be provided" |
|
|
|
if exists(x): |
|
xs = torch.full(size=(batch_size,), fill_value=x).to(device) |
|
assert exists(xs) |
|
return xs |
|
|
|
|
|
class Diffusion(nn.Module): |
|
alias: str = "" |
|
|
|
"""Base diffusion class""" |
|
|
|
def denoise_fn( |
|
self, |
|
x_noisy: Tensor, |
|
sigmas: Optional[Tensor] = None, |
|
sigma: Optional[float] = None, |
|
**kwargs, |
|
) -> Tensor: |
|
raise NotImplementedError("Diffusion class missing denoise_fn") |
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor: |
|
raise NotImplementedError("Diffusion class missing forward function") |
|
|
|
|
|
class VDiffusion(Diffusion): |
|
alias = "v" |
|
|
|
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution): |
|
super().__init__() |
|
self.net = net |
|
self.sigma_distribution = sigma_distribution |
|
|
|
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]: |
|
angle = sigmas * pi / 2 |
|
alpha = torch.cos(angle) |
|
beta = torch.sin(angle) |
|
return alpha, beta |
|
|
|
def denoise_fn( |
|
self, |
|
x_noisy: Tensor, |
|
sigmas: Optional[Tensor] = None, |
|
sigma: Optional[float] = None, |
|
**kwargs, |
|
) -> Tensor: |
|
batch_size, device = x_noisy.shape[0], x_noisy.device |
|
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device) |
|
return self.net(x_noisy, sigmas, **kwargs) |
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor: |
|
batch_size, device = x.shape[0], x.device |
|
|
|
|
|
sigmas = self.sigma_distribution(num_samples=batch_size, device=device) |
|
sigmas_padded = rearrange(sigmas, "b -> b 1 1") |
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x)) |
|
|
|
|
|
alpha, beta = self.get_alpha_beta(sigmas_padded) |
|
x_noisy = x * alpha + noise * beta |
|
x_target = noise * alpha - x * beta |
|
|
|
|
|
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs) |
|
return F.mse_loss(x_denoised, x_target) |
|
|
|
|
|
class KDiffusion(Diffusion): |
|
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364""" |
|
|
|
alias = "k" |
|
|
|
def __init__( |
|
self, |
|
net: nn.Module, |
|
*, |
|
sigma_distribution: Distribution, |
|
sigma_data: float, |
|
dynamic_threshold: float = 0.0, |
|
): |
|
super().__init__() |
|
self.net = net |
|
self.sigma_data = sigma_data |
|
self.sigma_distribution = sigma_distribution |
|
self.dynamic_threshold = dynamic_threshold |
|
|
|
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]: |
|
sigma_data = self.sigma_data |
|
c_noise = torch.log(sigmas) * 0.25 |
|
sigmas = rearrange(sigmas, "b -> b 1 1") |
|
c_skip = (sigma_data**2) / (sigmas**2 + sigma_data**2) |
|
c_out = sigmas * sigma_data * (sigma_data**2 + sigmas**2) ** -0.5 |
|
c_in = (sigmas**2 + sigma_data**2) ** -0.5 |
|
return c_skip, c_out, c_in, c_noise |
|
|
|
def denoise_fn( |
|
self, |
|
x_noisy: Tensor, |
|
sigmas: Optional[Tensor] = None, |
|
sigma: Optional[float] = None, |
|
**kwargs, |
|
) -> Tensor: |
|
batch_size, device = x_noisy.shape[0], x_noisy.device |
|
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device) |
|
|
|
|
|
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas) |
|
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs) |
|
x_denoised = c_skip * x_noisy + c_out * x_pred |
|
|
|
return x_denoised |
|
|
|
def loss_weight(self, sigmas: Tensor) -> Tensor: |
|
|
|
return (sigmas**2 + self.sigma_data**2) * (sigmas * self.sigma_data) ** -2 |
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor: |
|
batch_size, device = x.shape[0], x.device |
|
from einops import rearrange, reduce |
|
|
|
|
|
sigmas = self.sigma_distribution(num_samples=batch_size, device=device) |
|
sigmas_padded = rearrange(sigmas, "b -> b 1 1") |
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x)) |
|
x_noisy = x + sigmas_padded * noise |
|
|
|
|
|
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs) |
|
|
|
|
|
losses = F.mse_loss(x_denoised, x, reduction="none") |
|
losses = reduce(losses, "b ... -> b", "mean") |
|
losses = losses * self.loss_weight(sigmas) |
|
loss = losses.mean() |
|
return loss |
|
|
|
|
|
class VKDiffusion(Diffusion): |
|
alias = "vk" |
|
|
|
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution): |
|
super().__init__() |
|
self.net = net |
|
self.sigma_distribution = sigma_distribution |
|
|
|
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]: |
|
sigma_data = 1.0 |
|
sigmas = rearrange(sigmas, "b -> b 1 1") |
|
c_skip = (sigma_data**2) / (sigmas**2 + sigma_data**2) |
|
c_out = -sigmas * sigma_data * (sigma_data**2 + sigmas**2) ** -0.5 |
|
c_in = (sigmas**2 + sigma_data**2) ** -0.5 |
|
return c_skip, c_out, c_in |
|
|
|
def sigma_to_t(self, sigmas: Tensor) -> Tensor: |
|
return sigmas.atan() / pi * 2 |
|
|
|
def t_to_sigma(self, t: Tensor) -> Tensor: |
|
return (t * pi / 2).tan() |
|
|
|
def denoise_fn( |
|
self, |
|
x_noisy: Tensor, |
|
sigmas: Optional[Tensor] = None, |
|
sigma: Optional[float] = None, |
|
**kwargs, |
|
) -> Tensor: |
|
batch_size, device = x_noisy.shape[0], x_noisy.device |
|
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device) |
|
|
|
|
|
c_skip, c_out, c_in = self.get_scale_weights(sigmas) |
|
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs) |
|
x_denoised = c_skip * x_noisy + c_out * x_pred |
|
return x_denoised |
|
|
|
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor: |
|
batch_size, device = x.shape[0], x.device |
|
|
|
|
|
sigmas = self.sigma_distribution(num_samples=batch_size, device=device) |
|
sigmas_padded = rearrange(sigmas, "b -> b 1 1") |
|
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x)) |
|
x_noisy = x + sigmas_padded * noise |
|
|
|
|
|
c_skip, c_out, c_in = self.get_scale_weights(sigmas) |
|
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs) |
|
|
|
|
|
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7) |
|
|
|
|
|
loss = F.mse_loss(x_pred, v_target) |
|
return loss |
|
|
|
|
|
""" |
|
Diffusion Sampling |
|
""" |
|
|
|
""" Schedules """ |
|
|
|
|
|
class Schedule(nn.Module): |
|
"""Interface used by different sampling schedules""" |
|
|
|
def forward(self, num_steps: int, device: torch.device) -> Tensor: |
|
raise NotImplementedError() |
|
|
|
|
|
class LinearSchedule(Schedule): |
|
def forward(self, num_steps: int, device: Any) -> Tensor: |
|
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1] |
|
return sigmas |
|
|
|
|
|
class KarrasSchedule(Schedule): |
|
"""https://arxiv.org/abs/2206.00364 equation 5""" |
|
|
|
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0): |
|
super().__init__() |
|
self.sigma_min = sigma_min |
|
self.sigma_max = sigma_max |
|
self.rho = rho |
|
|
|
def forward(self, num_steps: int, device: Any) -> Tensor: |
|
rho_inv = 1.0 / self.rho |
|
steps = torch.arange(num_steps, device=device, dtype=torch.float32) |
|
sigmas = ( |
|
self.sigma_max**rho_inv |
|
+ (steps / (num_steps - 1)) |
|
* (self.sigma_min**rho_inv - self.sigma_max**rho_inv) |
|
) ** self.rho |
|
sigmas = F.pad(sigmas, pad=(0, 1), value=0.0) |
|
return sigmas |
|
|
|
|
|
""" Samplers """ |
|
|
|
|
|
class Sampler(nn.Module): |
|
diffusion_types: List[Type[Diffusion]] = [] |
|
|
|
def forward( |
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int |
|
) -> Tensor: |
|
raise NotImplementedError() |
|
|
|
def inpaint( |
|
self, |
|
source: Tensor, |
|
mask: Tensor, |
|
fn: Callable, |
|
sigmas: Tensor, |
|
num_steps: int, |
|
num_resamples: int, |
|
) -> Tensor: |
|
raise NotImplementedError("Inpainting not available with current sampler") |
|
|
|
|
|
class VSampler(Sampler): |
|
diffusion_types = [VDiffusion] |
|
|
|
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]: |
|
angle = sigma * pi / 2 |
|
alpha = cos(angle) |
|
beta = sin(angle) |
|
return alpha, beta |
|
|
|
def forward( |
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int |
|
) -> Tensor: |
|
x = sigmas[0] * noise |
|
alpha, beta = self.get_alpha_beta(sigmas[0].item()) |
|
|
|
for i in range(num_steps - 1): |
|
is_last = i == num_steps - 1 |
|
|
|
x_denoised = fn(x, sigma=sigmas[i]) |
|
x_pred = x * alpha - x_denoised * beta |
|
x_eps = x * beta + x_denoised * alpha |
|
|
|
if not is_last: |
|
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item()) |
|
x = x_pred * alpha + x_eps * beta |
|
|
|
return x_pred |
|
|
|
|
|
class KarrasSampler(Sampler): |
|
"""https://arxiv.org/abs/2206.00364 algorithm 1""" |
|
|
|
diffusion_types = [KDiffusion, VKDiffusion] |
|
|
|
def __init__( |
|
self, |
|
s_tmin: float = 0, |
|
s_tmax: float = float("inf"), |
|
s_churn: float = 0.0, |
|
s_noise: float = 1.0, |
|
): |
|
super().__init__() |
|
self.s_tmin = s_tmin |
|
self.s_tmax = s_tmax |
|
self.s_noise = s_noise |
|
self.s_churn = s_churn |
|
|
|
def step( |
|
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float |
|
) -> Tensor: |
|
"""Algorithm 2 (step)""" |
|
|
|
sigma_hat = sigma + gamma * sigma |
|
|
|
epsilon = self.s_noise * torch.randn_like(x) |
|
x_hat = x + sqrt(sigma_hat**2 - sigma**2) * epsilon |
|
|
|
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat |
|
|
|
x_next = x_hat + (sigma_next - sigma_hat) * d |
|
|
|
if sigma_next != 0: |
|
model_out_next = fn(x_next, sigma=sigma_next) |
|
d_prime = (x_next - model_out_next) / sigma_next |
|
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime) |
|
return x_next |
|
|
|
def forward( |
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int |
|
) -> Tensor: |
|
x = sigmas[0] * noise |
|
|
|
gammas = torch.where( |
|
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax), |
|
min(self.s_churn / num_steps, sqrt(2) - 1), |
|
0.0, |
|
) |
|
|
|
for i in range(num_steps - 1): |
|
x = self.step( |
|
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] |
|
) |
|
|
|
return x |
|
|
|
|
|
class AEulerSampler(Sampler): |
|
diffusion_types = [KDiffusion, VKDiffusion] |
|
|
|
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]: |
|
sigma_up = sqrt(sigma_next**2 * (sigma**2 - sigma_next**2) / sigma**2) |
|
sigma_down = sqrt(sigma_next**2 - sigma_up**2) |
|
return sigma_up, sigma_down |
|
|
|
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor: |
|
|
|
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next) |
|
|
|
d = (x - fn(x, sigma=sigma)) / sigma |
|
|
|
x_next = x + d * (sigma_down - sigma) |
|
|
|
x_next = x_next + torch.randn_like(x) * sigma_up |
|
return x_next |
|
|
|
def forward( |
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int |
|
) -> Tensor: |
|
x = sigmas[0] * noise |
|
|
|
for i in range(num_steps - 1): |
|
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) |
|
return x |
|
|
|
|
|
class ADPM2Sampler(Sampler): |
|
"""https://www.desmos.com/calculator/jbxjlqd9mb""" |
|
|
|
diffusion_types = [KDiffusion, VKDiffusion] |
|
|
|
def __init__(self, rho: float = 1.0): |
|
super().__init__() |
|
self.rho = rho |
|
|
|
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]: |
|
r = self.rho |
|
sigma_up = sqrt(sigma_next**2 * (sigma**2 - sigma_next**2) / sigma**2) |
|
sigma_down = sqrt(sigma_next**2 - sigma_up**2) |
|
sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r |
|
return sigma_up, sigma_down, sigma_mid |
|
|
|
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor: |
|
|
|
sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next) |
|
|
|
d = (x - fn(x, sigma=sigma)) / sigma |
|
|
|
x_mid = x + d * (sigma_mid - sigma) |
|
|
|
d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid |
|
|
|
x = x + d_mid * (sigma_down - sigma) |
|
|
|
x_next = x + torch.randn_like(x) * sigma_up |
|
return x_next |
|
|
|
def forward( |
|
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int |
|
) -> Tensor: |
|
x = sigmas[0] * noise |
|
|
|
for i in range(num_steps - 1): |
|
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) |
|
return x |
|
|
|
def inpaint( |
|
self, |
|
source: Tensor, |
|
mask: Tensor, |
|
fn: Callable, |
|
sigmas: Tensor, |
|
num_steps: int, |
|
num_resamples: int, |
|
) -> Tensor: |
|
x = sigmas[0] * torch.randn_like(source) |
|
|
|
for i in range(num_steps - 1): |
|
|
|
source_noisy = source + sigmas[i] * torch.randn_like(source) |
|
for r in range(num_resamples): |
|
|
|
x = source_noisy * mask + x * ~mask |
|
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) |
|
|
|
if r < num_resamples - 1: |
|
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2) |
|
x = x + sigma * torch.randn_like(x) |
|
|
|
return source * mask + x * ~mask |
|
|
|
|
|
""" Main Classes """ |
|
|
|
|
|
class DiffusionSampler(nn.Module): |
|
def __init__( |
|
self, |
|
diffusion: Diffusion, |
|
*, |
|
sampler: Sampler, |
|
sigma_schedule: Schedule, |
|
num_steps: Optional[int] = None, |
|
clamp: bool = True, |
|
): |
|
super().__init__() |
|
self.denoise_fn = diffusion.denoise_fn |
|
self.sampler = sampler |
|
self.sigma_schedule = sigma_schedule |
|
self.num_steps = num_steps |
|
self.clamp = clamp |
|
|
|
|
|
sampler_class = sampler.__class__.__name__ |
|
diffusion_class = diffusion.__class__.__name__ |
|
message = f"{sampler_class} incompatible with {diffusion_class}" |
|
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message |
|
|
|
def forward( |
|
self, noise: Tensor, num_steps: Optional[int] = None, **kwargs |
|
) -> Tensor: |
|
device = noise.device |
|
num_steps = default(num_steps, self.num_steps) |
|
assert exists(num_steps), "Parameter `num_steps` must be provided" |
|
|
|
sigmas = self.sigma_schedule(num_steps, device) |
|
|
|
fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) |
|
|
|
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps) |
|
x = x.clamp(-1.0, 1.0) if self.clamp else x |
|
return x |
|
|
|
|
|
class DiffusionInpainter(nn.Module): |
|
def __init__( |
|
self, |
|
diffusion: Diffusion, |
|
*, |
|
num_steps: int, |
|
num_resamples: int, |
|
sampler: Sampler, |
|
sigma_schedule: Schedule, |
|
): |
|
super().__init__() |
|
self.denoise_fn = diffusion.denoise_fn |
|
self.num_steps = num_steps |
|
self.num_resamples = num_resamples |
|
self.inpaint_fn = sampler.inpaint |
|
self.sigma_schedule = sigma_schedule |
|
|
|
@torch.no_grad() |
|
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor: |
|
x = self.inpaint_fn( |
|
source=inpaint, |
|
mask=inpaint_mask, |
|
fn=self.denoise_fn, |
|
sigmas=self.sigma_schedule(self.num_steps, inpaint.device), |
|
num_steps=self.num_steps, |
|
num_resamples=self.num_resamples, |
|
) |
|
return x |
|
|
|
|
|
def sequential_mask(like: Tensor, start: int) -> Tensor: |
|
length, device = like.shape[2], like.device |
|
mask = torch.ones_like(like, dtype=torch.bool) |
|
mask[:, :, start:] = torch.zeros((length - start,), device=device) |
|
return mask |
|
|
|
|
|
class SpanBySpanComposer(nn.Module): |
|
def __init__( |
|
self, |
|
inpainter: DiffusionInpainter, |
|
*, |
|
num_spans: int, |
|
): |
|
super().__init__() |
|
self.inpainter = inpainter |
|
self.num_spans = num_spans |
|
|
|
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor: |
|
half_length = start.shape[2] // 2 |
|
|
|
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else [] |
|
|
|
inpaint = torch.zeros_like(start) |
|
inpaint[:, :, :half_length] = start[:, :, half_length:] |
|
inpaint_mask = sequential_mask(like=start, start=half_length) |
|
|
|
for i in range(self.num_spans): |
|
|
|
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask) |
|
|
|
second_half = span[:, :, half_length:] |
|
inpaint[:, :, :half_length] = second_half |
|
|
|
spans.append(second_half) |
|
|
|
return torch.cat(spans, dim=2) |
|
|
|
|
|
class XDiffusion(nn.Module): |
|
def __init__(self, type: str, net: nn.Module, **kwargs): |
|
super().__init__() |
|
|
|
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion] |
|
aliases = [t.alias for t in diffusion_classes] |
|
message = f"type='{type}' must be one of {*aliases,}" |
|
assert type in aliases, message |
|
self.net = net |
|
|
|
for XDiffusion in diffusion_classes: |
|
if XDiffusion.alias == type: |
|
self.diffusion = XDiffusion(net=net, **kwargs) |
|
|
|
def forward(self, *args, **kwargs) -> Tensor: |
|
return self.diffusion(*args, **kwargs) |
|
|
|
def sample( |
|
self, |
|
noise: Tensor, |
|
num_steps: int, |
|
sigma_schedule: Schedule, |
|
sampler: Sampler, |
|
clamp: bool, |
|
**kwargs, |
|
) -> Tensor: |
|
diffusion_sampler = DiffusionSampler( |
|
diffusion=self.diffusion, |
|
sampler=sampler, |
|
sigma_schedule=sigma_schedule, |
|
num_steps=num_steps, |
|
clamp=clamp, |
|
) |
|
return diffusion_sampler(noise, **kwargs) |
|
|