Spaces:
vztu
/
Runtime error

COVER / cover /models /xclip_backbone.py
nanushio
+ [MAJOR] [ROOT] [CREATE] 1. fork repo from COVER github
feb2918
import copy
import math
from collections import OrderedDict
from typing import Tuple, Union
import clip
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange
from timm.models.layers import trunc_normal_
from torch import nn
from torch.utils.checkpoint import checkpoint_sequential
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
# orig_type = x.dtype
# ret = super().forward(x.type(torch.float32))
# return ret.type(orig_type)
return super().forward(x)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(
self, d_model: int, n_head: int, attn_mask: torch.Tensor = None,
):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head,)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model)),
]
)
)
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = (
self.attn_mask.to(dtype=x.dtype, device=x.device)
if self.attn_mask is not None
else None
)
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None
):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(
*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]
)
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class VisionTransformer(nn.Module):
def __init__(
self,
input_resolution: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
)
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[
self.class_embedding.to(x.dtype)
+ torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
),
x,
],
dim=1,
) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, 0, :])
if self.proj is not None:
x = x @ self.proj
return x
class CLIP(nn.Module):
def __init__(
self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
):
super().__init__()
self.context_length = context_length
# vision_heads = vision_width // 64
# self.visual = VisionTransformer(
# input_resolution=image_resolution,
# patch_size=vision_patch_size,
# width=vision_width,
# layers=vision_layers,
# heads=vision_heads,
# output_dim=embed_dim
# )
# self.transformer = Transformer(
# width=transformer_width,
# layers=transformer_layers,
# heads=transformer_heads,
# attn_mask=self.build_attention_mask()
# )
# self.vocab_size = vocab_size
# self.token_embedding = nn.Embedding(vocab_size, transformer_width)
# self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
# self.ln_final = LayerNorm(transformer_width)
# self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
# self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * (
(2 * self.transformer.layers) ** -0.5
)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_text(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
class CrossFramelAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
attn_mask: torch.Tensor = None,
droppath=0.0,
T=0,
):
super().__init__()
self.T = T
self.message_fc = nn.Linear(d_model, d_model)
self.message_ln = LayerNorm(d_model)
self.message_attn = nn.MultiheadAttention(d_model, n_head,)
self.attn = nn.MultiheadAttention(d_model, n_head,)
self.ln_1 = LayerNorm(d_model)
self.drop_path = DropPath(droppath) if droppath > 0.0 else nn.Identity()
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model)),
]
)
)
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = (
self.attn_mask.to(dtype=x.dtype, device=x.device)
if self.attn_mask is not None
else None
)
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x):
l, bt, d = x.size()
b = bt // self.T
x = x.view(l, b, self.T, d)
msg_token = self.message_fc(x[0, :, :, :])
msg_token = msg_token.view(b, self.T, 1, d)
msg_token = msg_token.permute(1, 2, 0, 3).view(self.T, b, d)
msg_token = msg_token + self.drop_path(
self.message_attn(
self.message_ln(msg_token),
self.message_ln(msg_token),
self.message_ln(msg_token),
need_weights=False,
)[0]
)
msg_token = msg_token.view(self.T, 1, b, d).permute(1, 2, 0, 3)
x = torch.cat([x, msg_token], dim=0)
x = x.view(l + 1, -1, d)
x = x + self.drop_path(self.attention(self.ln_1(x)))
x = x[:l, :, :]
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
attn_mask: torch.Tensor = None,
droppath=None,
use_checkpoint=False,
T=8,
):
super().__init__()
self.use_checkpoint = use_checkpoint
if droppath is None:
droppath = [0.0 for i in range(layers)]
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(
*[
CrossFramelAttentionBlock(width, heads, attn_mask, droppath[i], T)
for i in range(layers)
]
)
def forward(self, x: torch.Tensor):
if not self.use_checkpoint:
return self.resblocks(x)
else:
return checkpoint_sequential(self.resblocks, 3, x)
class CrossFrameCommunicationTransformer(nn.Module):
def __init__(
self,
input_resolution: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
droppath=None,
T=8,
use_checkpoint=False,
):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)
)
self.ln_pre = LayerNorm(width)
## Attention Blocks
self.transformer = Transformer(
width, layers, heads, droppath=droppath, use_checkpoint=use_checkpoint, T=T,
)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def init_weights(self):
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[
self.class_embedding.to(x.dtype)
+ torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
),
x,
],
dim=1,
) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2)
x = self.transformer(x)
x = x.permute(1, 0, 2)
cls_x = self.ln_post(x[:, 0, :])
if self.proj is not None:
cls_x = cls_x @ self.proj
return cls_x, x[:, 1:, :]
class MulitHeadAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, k, v):
B, N, C = q.shape
B, M, C = k.shape
q = (
self.q_proj(q)
.reshape(B, N, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
)
k = (
self.k_proj(k)
.reshape(B, M, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
)
v = (
self.v_proj(v)
.reshape(B, M, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class PromptGeneratorLayer(nn.Module):
def __init__(
self, d_model, nhead, dropout=0.0,
):
super().__init__()
self.cross_attn = MulitHeadAttention(d_model, nhead, proj_drop=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.mlp = nn.Sequential(
nn.Linear(d_model, d_model * 4),
QuickGELU(),
nn.Dropout(dropout),
nn.Linear(d_model * 4, d_model),
)
def forward(self, x, visual):
q = k = v = self.norm1(x)
x = x + self.cross_attn(q, visual, visual)
x = x + self.dropout(self.mlp(self.norm3(x)))
return x
class VideoSpecificPrompt(nn.Module):
def __init__(
self, layers=2, embed_dim=512, alpha=0.1,
):
super().__init__()
self.norm = nn.LayerNorm(embed_dim)
self.decoder = nn.ModuleList(
[PromptGeneratorLayer(embed_dim, embed_dim // 64) for _ in range(layers)]
)
self.alpha = nn.Parameter(torch.ones(embed_dim) * alpha)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, text, visual):
B, N, C = visual.shape
visual = self.norm(visual)
for layer in self.decoder:
text = layer(text, visual)
from collections import OrderedDict
from timm.models.layers import trunc_normal_
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = nn.LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model)),
]
)
)
self.ln_2 = nn.LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = (
self.attn_mask.to(dtype=x.dtype, device=x.device)
if self.attn_mask is not None
else None
)
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class MultiframeIntegrationTransformer(nn.Module):
def __init__(
self, T, embed_dim=512, layers=1,
):
super().__init__()
self.T = T
transformer_heads = embed_dim // 64
self.positional_embedding = nn.Parameter(torch.empty(1, T, embed_dim))
trunc_normal_(self.positional_embedding, std=0.02)
self.resblocks = nn.Sequential(
*[
ResidualAttentionBlock(d_model=embed_dim, n_head=transformer_heads)
for _ in range(layers)
]
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Linear,)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.zeros_(m.bias)
nn.init.ones_(m.weight)
def forward(self, x):
ori_x = x
x = x + self.positional_embedding
x = x.permute(1, 0, 2)
x = self.resblocks(x)
x = x.permute(1, 0, 2)
x = x.type(ori_x.dtype) + ori_x
return x.mean(dim=1, keepdim=False)
class XCLIP(CLIP):
def __init__(
self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
# video
T=8,
droppath=0.0,
mit_layers=1,
# prompt
prompts_alpha=1e-4,
prompts_layers=1,
# other
use_cache=True,
use_checkpoint=False,
):
super().__init__(
embed_dim,
image_resolution,
vision_layers,
vision_width,
vision_patch_size,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
)
self.prompts_generator = VideoSpecificPrompt(
layers=prompts_layers, embed_dim=embed_dim, alpha=prompts_alpha,
)
self.use_cache = use_cache
self.mit = MultiframeIntegrationTransformer(
T=T, embed_dim=embed_dim, layers=mit_layers,
)
dpr = (
[x.item() for x in torch.linspace(0, droppath, vision_layers)]
if droppath > 0.0
else None
)
vision_heads = vision_width // 64
self.visual = CrossFrameCommunicationTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
droppath=dpr,
T=T,
use_checkpoint=use_checkpoint,
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask(),
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, transformer_width)
)
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.cache_text_features = None
self.prompts_visual_ln = LayerNorm(vision_width)
self.prompts_visual_proj = nn.Parameter(torch.randn(vision_width, embed_dim))
self.initialize_parameters()
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {"positional_embedding"}
def encode_image(self, image):
return self.visual(image)
def encode_text(self, text):
x = self.token_embedding(text)
eos_indx = text.argmax(dim=-1)
K, N1, C = x.shape
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection
x = x.reshape(K, -1)
return x
def encode_video(self, image):
b, t, c, h, w = image.size()
image = image.reshape(-1, c, h, w)
cls_features, img_features = self.encode_image(image)
img_features = self.prompts_visual_ln(img_features)
img_features = img_features @ self.prompts_visual_proj
cls_features = cls_features.view(b, t, -1)
img_features = img_features.view(b, t, -1, cls_features.shape[-1])
video_features = self.mit(cls_features)
return video_features, img_features
def forward(self, image, **kwargs):
image = rearrange(image, "b c t h w -> b t c h w")
video_features, _ = self.encode_video(image)
return video_features.reshape(*video_features.shape, 1, 1, 1)
def cache_text(self, text):
self.eval()
with torch.no_grad():
if self.cache_text_features is None:
self.cache_text_features = self.encode_text(text)
self.train()
return self.cache_text_features
def forward_original(self, image, text):
b = image.shape[0]
video_features, img_features = self.encode_video(image)
img_features = img_features.mean(dim=1, keepdim=False)
if self.use_cache:
text_features = self.cache_text(text)
else:
text_features = self.encode_text(text)
text_features = text_features.unsqueeze(0).expand(b, -1, -1)
text_features = text_features + self.prompts_generator(
text_features, img_features
)
video_features = video_features / video_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
logit_scale = self.logit_scale.exp()
logits = torch.einsum("bd,bkd->bk", video_features, logit_scale * text_features)
return logits
def build_x_clip_model(
pretrained_path="./pretrained_weights/k400_32_8.pth",
droppath=0.0,
use_checkpoint=False,
logger=None,
prompts_alpha=1e-1,
prompts_layers=2,
use_cache=True,
mit_layers=4,
**kwargs,
):
state_dict = torch.load(pretrained_path, map_location="cpu")["model"]
T = int(pretrained_path.split("_")[-1].split(".")[0])
print(T)
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[
k
for k in state_dict.keys()
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
]
)
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round(
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5
)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [
len(
set(
k.split(".")[2]
for k in state_dict
if k.startswith(f"visual.layer{b}")
)
)
for b in [1, 2, 3, 4]
]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round(
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5
)
vision_patch_size = None
assert (
output_width ** 2 + 1
== state_dict["visual.attnpool.positional_embedding"].shape[0]
)
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split(".")[2]
for k in state_dict
if k.startswith(f"transformer.resblocks")
)
)
model = XCLIP(
embed_dim,
image_resolution,
vision_layers,
vision_width,
vision_patch_size,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
T=T,
droppath=droppath,
mit_layers=mit_layers,
prompts_alpha=prompts_alpha,
prompts_layers=prompts_layers,
use_checkpoint=use_checkpoint,
use_cache=use_cache,
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
return model.eval()