Spaces:
vztu
/
Runtime error

COVER / evaluate_one_video.py
nanushio
+ [MAJOR] [ROOT] [CREATE] 1. fork repo from COVER github
feb2918
raw
history blame
3.26 kB
import torch
import argparse
import pickle as pkl
import decord
from decord import VideoReader
import numpy as np
import yaml
from cover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition
from cover.models import COVER
mean, std = (
torch.FloatTensor([123.675, 116.28, 103.53]),
torch.FloatTensor([58.395, 57.12, 57.375]),
)
mean_clip, std_clip = (
torch.FloatTensor([122.77, 116.75, 104.09]),
torch.FloatTensor([68.50, 66.63, 70.32])
)
def fuse_results(results: list):
x = (results[0] + results[1] + results[2])
return {
"semantic" : results[0],
"technical": results[1],
"aesthetic": results[2],
"overall" : x,
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--opt" , type=str, default="./cover.yml", help="the option file")
parser.add_argument("--video_path", type=str, default="./demo/video_1.mp4" , help='output file to store predict mos value')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
"""
BASIC SETTINGS
"""
torch.cuda.current_device()
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open(args.opt, "r") as f:
opt = yaml.safe_load(f)
dopt = opt["data"]["val-ytugc"]["args"]
temporal_samplers = {}
for stype, sopt in dopt["sample_types"].items():
temporal_samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"] // sopt["t_frag"],
sopt["t_frag"],
sopt["frame_interval"],
sopt["num_clips"],
)
"""
LOAD MODEL
"""
evaluator = COVER(**opt["model"]["args"]).to(device)
state_dict = torch.load(opt["test_load_path"], map_location=device)
# set strict=False here to avoid error of missing
# weight of prompt_learner in clip-iqa+, cross-gate
evaluator.load_state_dict(state_dict['state_dict'], strict=False)
"""
TESTING
"""
views, _ = spatial_temporal_view_decomposition(
args.video_path, dopt["sample_types"], temporal_samplers
)
for k, v in views.items():
num_clips = dopt["sample_types"][k].get("num_clips", 1)
if k == 'technical' or k == 'aesthetic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean) / std)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(device)
)
elif k == 'semantic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean_clip) / std_clip)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(device)
)
results = [r.mean().item() for r in evaluator(views)]
pred_score = fuse_results(results)
print(f"path, semantic score, technical score, aesthetic score, overall/final score")
print(f'{args.video_path.split("/")[-1]},{pred_score["semantic"]:4f},{pred_score["technical"]:4f},{pred_score["aesthetic"]:4f},{pred_score["overall"]:4f}')