vvd2003's picture
Upload 15 files
6fa8c33
raw
history blame
2.77 kB
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch
from class_names import class_names
from model import Load_model
from timeit import default_timer as timer
from typing import Tuple, Dict
### 1. Model and transforms preparation ###
# Create model and transform
model, transforms = Load_model()
# Load saved weights
def load_checkpoint(checkpoint_file, model, device='cpu'):
print("=> Loading checkpoint")
checkpoint = torch.load(checkpoint_file, map_location=device)
model.load_state_dict(checkpoint["state_dict"])
load_checkpoint('model_checkpoint.pt', model)
### 2. Predict function ###
# Create predict function
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img = transforms(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
model.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(model(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
### 3. Gradio app ###
# Create title, description and article strings
title = "BirdVision 500 πŸ¦…πŸ¦†πŸ¦πŸ•ŠπŸ¦€πŸ¦’πŸ¦œ"
description = "A model based on YoLov8 classification 500 birds."
article = "Created on [GITHUB](https://github.com/vvduc1803?tab=repositories/)."
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=10, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")],
# our fn has two outputs, therefore we have two outputs
# Create examples list from "examples/" directory
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch()