Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import uuid
|
| 4 |
+
import time
|
| 5 |
+
import json
|
| 6 |
+
import logging
|
| 7 |
+
import tempfile
|
| 8 |
+
import threading
|
| 9 |
+
|
| 10 |
+
from flask import Flask, request, jsonify, send_file
|
| 11 |
+
from transformers import pipeline
|
| 12 |
+
from gtts import gTTS
|
| 13 |
+
from pydub import AudioSegment
|
| 14 |
+
|
| 15 |
+
# ================= CONFIG =================
|
| 16 |
+
|
| 17 |
+
TEMP_AUDIO_DIR = "/tmp/audio"
|
| 18 |
+
os.makedirs(TEMP_AUDIO_DIR, exist_ok=True)
|
| 19 |
+
|
| 20 |
+
STT_MODEL = "openai/whisper-tiny"
|
| 21 |
+
LLM_MODEL = "google/flan-t5-base"
|
| 22 |
+
|
| 23 |
+
MAX_AUDIO_SECONDS = 10
|
| 24 |
+
MAX_TEXT_LEN = 200
|
| 25 |
+
|
| 26 |
+
CLEANUP_INTERVAL = 300 # seconds
|
| 27 |
+
FILE_EXPIRE_TIME = 600 # seconds
|
| 28 |
+
|
| 29 |
+
# ================= LOG =================
|
| 30 |
+
|
| 31 |
+
logging.basicConfig(
|
| 32 |
+
level=logging.INFO,
|
| 33 |
+
format="%(asctime)s | %(levelname)s | %(message)s"
|
| 34 |
+
)
|
| 35 |
+
logger = logging.getLogger(__name__)
|
| 36 |
+
|
| 37 |
+
# ================= APP =================
|
| 38 |
+
|
| 39 |
+
app = Flask(__name__)
|
| 40 |
+
app.config["TEMP_AUDIO_DIR"] = TEMP_AUDIO_DIR
|
| 41 |
+
|
| 42 |
+
# ================= LOAD MODELS =================
|
| 43 |
+
|
| 44 |
+
logger.info("Loading STT model...")
|
| 45 |
+
stt_pipeline = pipeline(
|
| 46 |
+
"automatic-speech-recognition",
|
| 47 |
+
model=STT_MODEL,
|
| 48 |
+
device="cpu"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
logger.info("Loading LLM model...")
|
| 52 |
+
llm_pipeline = pipeline(
|
| 53 |
+
"text2text-generation",
|
| 54 |
+
model=LLM_MODEL,
|
| 55 |
+
device="cpu"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
logger.info("Models loaded successfully")
|
| 59 |
+
|
| 60 |
+
# ================= UTILS =================
|
| 61 |
+
|
| 62 |
+
def generate_tts_audio(text: str) -> bytes:
|
| 63 |
+
"""
|
| 64 |
+
Generate WAV 16kHz mono audio from text
|
| 65 |
+
"""
|
| 66 |
+
try:
|
| 67 |
+
text = text.replace("\n", " ").strip()
|
| 68 |
+
if not text:
|
| 69 |
+
text = "I understand."
|
| 70 |
+
|
| 71 |
+
text = text[:MAX_TEXT_LEN]
|
| 72 |
+
logger.info(f"TTS: {text}")
|
| 73 |
+
|
| 74 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as wav_file:
|
| 75 |
+
mp3_path = wav_file.name.replace(".wav", ".mp3")
|
| 76 |
+
|
| 77 |
+
tts = gTTS(text=text, lang="en")
|
| 78 |
+
tts.save(mp3_path)
|
| 79 |
+
|
| 80 |
+
audio = AudioSegment.from_file(mp3_path)
|
| 81 |
+
audio = audio.set_frame_rate(16000).set_channels(1)
|
| 82 |
+
audio.export(wav_file.name, format="wav")
|
| 83 |
+
|
| 84 |
+
with open(wav_file.name, "rb") as f:
|
| 85 |
+
wav_data = f.read()
|
| 86 |
+
|
| 87 |
+
os.remove(mp3_path)
|
| 88 |
+
os.remove(wav_file.name)
|
| 89 |
+
|
| 90 |
+
return wav_data
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
logger.error(f"TTS error: {e}", exc_info=True)
|
| 94 |
+
return b""
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def cleanup_temp_files():
|
| 98 |
+
while True:
|
| 99 |
+
try:
|
| 100 |
+
now = time.time()
|
| 101 |
+
for filename in os.listdir(TEMP_AUDIO_DIR):
|
| 102 |
+
path = os.path.join(TEMP_AUDIO_DIR, filename)
|
| 103 |
+
if os.path.isfile(path):
|
| 104 |
+
if now - os.path.getmtime(path) > FILE_EXPIRE_TIME:
|
| 105 |
+
os.remove(path)
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.warning(f"Cleanup error: {e}")
|
| 108 |
+
|
| 109 |
+
time.sleep(CLEANUP_INTERVAL)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
# ================= ROUTES =================
|
| 113 |
+
|
| 114 |
+
@app.route("/health", methods=["GET"])
|
| 115 |
+
def health():
|
| 116 |
+
return jsonify({
|
| 117 |
+
"status": "ok",
|
| 118 |
+
"stt": STT_MODEL,
|
| 119 |
+
"llm": LLM_MODEL
|
| 120 |
+
})
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
@app.route("/process_audio", methods=["POST"])
|
| 124 |
+
def process_audio():
|
| 125 |
+
try:
|
| 126 |
+
if "audio" not in request.files:
|
| 127 |
+
return jsonify({"error": "No audio file"}), 400
|
| 128 |
+
|
| 129 |
+
audio_file = request.files["audio"]
|
| 130 |
+
raw_audio = audio_file.read()
|
| 131 |
+
|
| 132 |
+
if len(raw_audio) < 1000:
|
| 133 |
+
return jsonify({"error": "Audio too short"}), 400
|
| 134 |
+
|
| 135 |
+
# ================= STT =================
|
| 136 |
+
logger.info("Running STT...")
|
| 137 |
+
stt_result = stt_pipeline(
|
| 138 |
+
raw_audio,
|
| 139 |
+
sampling_rate=16000
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
user_text = stt_result.get("text", "").strip()
|
| 143 |
+
logger.info(f"User said: {user_text}")
|
| 144 |
+
|
| 145 |
+
if not user_text:
|
| 146 |
+
user_text = "Hello"
|
| 147 |
+
|
| 148 |
+
# ================= LLM =================
|
| 149 |
+
logger.info("Running LLM...")
|
| 150 |
+
llm_result = llm_pipeline(
|
| 151 |
+
user_text,
|
| 152 |
+
max_new_tokens=64,
|
| 153 |
+
do_sample=False
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
answer = llm_result[0]["generated_text"]
|
| 157 |
+
logger.info(f"Answer: {answer}")
|
| 158 |
+
|
| 159 |
+
# ================= TTS =================
|
| 160 |
+
audio_response = generate_tts_audio(answer)
|
| 161 |
+
|
| 162 |
+
if not audio_response:
|
| 163 |
+
return jsonify({"error": "TTS failed"}), 500
|
| 164 |
+
|
| 165 |
+
file_id = str(uuid.uuid4())
|
| 166 |
+
filepath = os.path.join(TEMP_AUDIO_DIR, f"{file_id}.wav")
|
| 167 |
+
|
| 168 |
+
with open(filepath, "wb") as f:
|
| 169 |
+
f.write(audio_response)
|
| 170 |
+
|
| 171 |
+
return send_file(
|
| 172 |
+
filepath,
|
| 173 |
+
mimetype="audio/wav",
|
| 174 |
+
as_attachment=False,
|
| 175 |
+
download_name="response.wav"
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
except Exception as e:
|
| 179 |
+
logger.error(f"Processing error: {e}", exc_info=True)
|
| 180 |
+
return jsonify({"error": "Internal error"}), 500
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# ================= STARTUP =================
|
| 184 |
+
|
| 185 |
+
if __name__ == "__main__":
|
| 186 |
+
threading.Thread(target=cleanup_temp_files, daemon=True).start()
|
| 187 |
+
|
| 188 |
+
app.run(
|
| 189 |
+
host="0.0.0.0",
|
| 190 |
+
port=7860,
|
| 191 |
+
threaded=True
|
| 192 |
+
)
|