qwen3_sentiment_tinystories / Qwen3_model.py
vuminhtue's picture
Upload Qwen3_model.py
f124a0d verified
import numpy as np
import tiktoken
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
#Combines attention, normalization, and feed-forward modules; supports sliding or global attention types with residual connections.
# Implements Root Mean Square Layer Normalization for stabilizing activations.
class RMSNorm(nn.Module):
def __init__(self, emb_dim, eps=1e-6, bias=False, qwen3_compatible=True):
super().__init__()
self.eps = eps
self.qwen3_compatible = qwen3_compatible
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim)) if bias else None
def forward(self, x):
input_dtype = x.dtype
if self.qwen3_compatible:
x = x.to(torch.float32)
variance = x.pow(2).mean(dim=-1, keepdim=True)
norm_x = x * torch.rsqrt(variance + self.eps)
norm_x = norm_x * self.scale
if self.shift is not None:
norm_x = norm_x + self.shift
return norm_x.to(input_dtype)
#Calculates precomputed sine and cosine matrices for Rotary Positional Embedding (RoPE) based on head dimension and context length
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, dtype=torch.float32):
assert head_dim % 2 == 0, "Embedding dimension must be even"
# Compute the inverse frequencies
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
# Generate position indices
positions = torch.arange(context_length, dtype=dtype)
# Compute the angles
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
# Expand angles to match the head_dim
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
# Precompute sine and cosine
cos = torch.cos(angles)
sin = torch.sin(angles)
return cos, sin
#Applies these sine and cosine matrices to input tensor x, rotating its components to encode positional information (RoPE transformation).
def apply_rope(x, cos, sin):
# x: (batch_size, num_heads, seq_len, head_dim)
batch_size, num_heads, seq_len, head_dim = x.shape
assert head_dim % 2 == 0, "Head dimension must be even"
# Split x into first half and second half
x1 = x[..., : head_dim // 2] # First half
x2 = x[..., head_dim // 2 :] # Second half
# Adjust sin and cos shapes
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)
# Apply the rotary transformation
rotated = torch.cat((-x2, x1), dim=-1)
x_rotated = (x * cos) + (rotated * sin)
# It's ok to use lower-precision after applying cos and sin rotation
return x_rotated.to(dtype=x.dtype)
# Implements efficient multi-head attention with grouped key/value projections and rotary positional embeddings
class GroupedQueryAttention(nn.Module):
def __init__(
self, d_in, num_heads, num_kv_groups, head_dim=None, qk_norm=False, dtype=None
):
super().__init__()
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
self.num_heads = num_heads
self.num_kv_groups = num_kv_groups
self.group_size = num_heads // num_kv_groups
if head_dim is None:
assert d_in % num_heads == 0, "`d_in` must be divisible by `num_heads` if `head_dim` is not set"
head_dim = d_in // num_heads
self.head_dim = head_dim
self.d_out = num_heads * head_dim
self.W_query = nn.Linear(d_in, self.d_out, bias=False, dtype=dtype)
self.W_key = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
self.W_value = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
self.out_proj = nn.Linear(self.d_out, d_in, bias=False, dtype=dtype)
if qk_norm:
self.q_norm = RMSNorm(head_dim, eps=1e-6)
self.k_norm = RMSNorm(head_dim, eps=1e-6)
else:
self.q_norm = self.k_norm = None
def forward(self, x, mask, cos, sin):
b, num_tokens, _ = x.shape
# Apply projections
queries = self.W_query(x) # (b, num_tokens, num_heads * head_dim)
keys = self.W_key(x) # (b, num_tokens, num_kv_groups * head_dim)
values = self.W_value(x) # (b, num_tokens, num_kv_groups * head_dim)
# Reshape
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
# Optional normalization
if self.q_norm:
queries = self.q_norm(queries)
if self.k_norm:
keys = self.k_norm(keys)
# Apply RoPE
queries = apply_rope(queries, cos, sin)
keys = apply_rope(keys, cos, sin)
# Expand K and V to match number of heads
keys = keys.repeat_interleave(self.group_size, dim=1)
values = values.repeat_interleave(self.group_size, dim=1)
# Attention
attn_scores = queries @ keys.transpose(2, 3)
attn_scores = attn_scores.masked_fill(mask, -torch.inf)
attn_weights = torch.softmax(attn_scores / self.head_dim**0.5, dim=-1)
context = (attn_weights @ values).transpose(1, 2).reshape(b, num_tokens, self.d_out)
return self.out_proj(context)
#Standard feed-forward MLP block used inside transformers.
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
def forward(self, x):
x_fc1 = self.fc1(x)
x_fc2 = self.fc2(x)
x = nn.functional.silu(x_fc1) * x_fc2
return self.fc3(x)
class Qwen3Model(nn.Module):
def __init__(self, cfg):
super().__init__()
# Main model parameters
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = RMSNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusuable utilities
if cfg["head_dim"] is None:
head_dim = cfg["emb_dim"] // cfg["n_heads"]
else:
head_dim = cfg["head_dim"]
cos, sin = compute_rope_params(
head_dim=head_dim,
theta_base=cfg["rope_base"],
context_length=cfg["context_length"]
)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.cfg = cfg
def forward(self, in_idx,targets=None):
# Forward pass
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
num_tokens = x.shape[1]
mask = torch.triu(torch.ones(num_tokens, num_tokens, device=x.device, dtype=torch.bool), diagonal=1)
for block in self.trf_blocks:
x = block(x, mask, self.cos, self.sin)
x = self.final_norm(x)
loss = None
logits = self.out_head(x.to(self.cfg["dtype"]))
#if targets is not None:
# loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.reshape(-1))
return logits
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
for _ in range(max_new_tokens):
ctx_len = self.cfg["context_length"]
idx_cond = idx if idx.size(1) <= ctx_len else idx[:, -ctx_len:]
logits, _ = self(idx_cond) # targets=None by default
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = float("-inf")
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = GroupedQueryAttention(
d_in=cfg["emb_dim"],
num_heads=cfg["n_heads"],
head_dim=cfg["head_dim"],
num_kv_groups=cfg["n_kv_groups"],
qk_norm=cfg["qk_norm"],
dtype=cfg["dtype"]
)
self.ff = FeedForward(cfg)
self.norm1 = RMSNorm(cfg["emb_dim"], eps=1e-6)
self.norm2 = RMSNorm(cfg["emb_dim"], eps=1e-6)
def forward(self, x, mask, cos, sin):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size]
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = x + shortcut # Add the original input back
return x
def generate_text_simple(model, idx, max_new_tokens, context_size, temperature):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# Crop current context if it exceeds the supported context size
idx_cond = idx[:, -context_size:]
# Get the predictions
with torch.no_grad():
logits = model(idx_cond)
# Focus only on the last time step
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
logits = logits[:, -1, :]
# Apply temperature
logits = logits / temperature
# Convert to probabilities
probs = torch.softmax(logits, dim=-1) # (batch, vocab_size)
# Sample from the probability distribution
idx_next = torch.multinomial(probs, num_samples=1) # (batch, 1)
# Append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
return idx
def text_to_token_ids(text, tokenizer):
encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'})
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
return encoded_tensor
def token_ids_to_text(token_ids, tokenizer):
flat = token_ids.squeeze(0) # remove batch dimension
return tokenizer.decode(flat.tolist())