|
|
import numpy as np |
|
|
import tiktoken |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module): |
|
|
def __init__(self, emb_dim, eps=1e-6, bias=False, qwen3_compatible=True): |
|
|
super().__init__() |
|
|
self.eps = eps |
|
|
self.qwen3_compatible = qwen3_compatible |
|
|
self.scale = nn.Parameter(torch.ones(emb_dim)) |
|
|
self.shift = nn.Parameter(torch.zeros(emb_dim)) if bias else None |
|
|
|
|
|
def forward(self, x): |
|
|
input_dtype = x.dtype |
|
|
|
|
|
if self.qwen3_compatible: |
|
|
x = x.to(torch.float32) |
|
|
|
|
|
variance = x.pow(2).mean(dim=-1, keepdim=True) |
|
|
norm_x = x * torch.rsqrt(variance + self.eps) |
|
|
norm_x = norm_x * self.scale |
|
|
|
|
|
if self.shift is not None: |
|
|
norm_x = norm_x + self.shift |
|
|
|
|
|
return norm_x.to(input_dtype) |
|
|
|
|
|
|
|
|
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, dtype=torch.float32): |
|
|
assert head_dim % 2 == 0, "Embedding dimension must be even" |
|
|
|
|
|
|
|
|
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim)) |
|
|
|
|
|
|
|
|
positions = torch.arange(context_length, dtype=dtype) |
|
|
|
|
|
|
|
|
angles = positions[:, None] * inv_freq[None, :] |
|
|
|
|
|
|
|
|
angles = torch.cat([angles, angles], dim=1) |
|
|
|
|
|
|
|
|
cos = torch.cos(angles) |
|
|
sin = torch.sin(angles) |
|
|
|
|
|
return cos, sin |
|
|
|
|
|
|
|
|
def apply_rope(x, cos, sin): |
|
|
|
|
|
batch_size, num_heads, seq_len, head_dim = x.shape |
|
|
assert head_dim % 2 == 0, "Head dimension must be even" |
|
|
|
|
|
|
|
|
x1 = x[..., : head_dim // 2] |
|
|
x2 = x[..., head_dim // 2 :] |
|
|
|
|
|
|
|
|
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) |
|
|
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
|
|
|
rotated = torch.cat((-x2, x1), dim=-1) |
|
|
x_rotated = (x * cos) + (rotated * sin) |
|
|
|
|
|
|
|
|
return x_rotated.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
class GroupedQueryAttention(nn.Module): |
|
|
def __init__( |
|
|
self, d_in, num_heads, num_kv_groups, head_dim=None, qk_norm=False, dtype=None |
|
|
): |
|
|
super().__init__() |
|
|
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups" |
|
|
|
|
|
self.num_heads = num_heads |
|
|
self.num_kv_groups = num_kv_groups |
|
|
self.group_size = num_heads // num_kv_groups |
|
|
|
|
|
if head_dim is None: |
|
|
assert d_in % num_heads == 0, "`d_in` must be divisible by `num_heads` if `head_dim` is not set" |
|
|
head_dim = d_in // num_heads |
|
|
|
|
|
self.head_dim = head_dim |
|
|
self.d_out = num_heads * head_dim |
|
|
|
|
|
self.W_query = nn.Linear(d_in, self.d_out, bias=False, dtype=dtype) |
|
|
self.W_key = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype) |
|
|
self.W_value = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype) |
|
|
|
|
|
self.out_proj = nn.Linear(self.d_out, d_in, bias=False, dtype=dtype) |
|
|
|
|
|
if qk_norm: |
|
|
self.q_norm = RMSNorm(head_dim, eps=1e-6) |
|
|
self.k_norm = RMSNorm(head_dim, eps=1e-6) |
|
|
else: |
|
|
self.q_norm = self.k_norm = None |
|
|
|
|
|
def forward(self, x, mask, cos, sin): |
|
|
b, num_tokens, _ = x.shape |
|
|
|
|
|
|
|
|
queries = self.W_query(x) |
|
|
keys = self.W_key(x) |
|
|
values = self.W_value(x) |
|
|
|
|
|
|
|
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2) |
|
|
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
if self.q_norm: |
|
|
queries = self.q_norm(queries) |
|
|
if self.k_norm: |
|
|
keys = self.k_norm(keys) |
|
|
|
|
|
|
|
|
queries = apply_rope(queries, cos, sin) |
|
|
keys = apply_rope(keys, cos, sin) |
|
|
|
|
|
|
|
|
keys = keys.repeat_interleave(self.group_size, dim=1) |
|
|
values = values.repeat_interleave(self.group_size, dim=1) |
|
|
|
|
|
|
|
|
attn_scores = queries @ keys.transpose(2, 3) |
|
|
attn_scores = attn_scores.masked_fill(mask, -torch.inf) |
|
|
attn_weights = torch.softmax(attn_scores / self.head_dim**0.5, dim=-1) |
|
|
|
|
|
context = (attn_weights @ values).transpose(1, 2).reshape(b, num_tokens, self.d_out) |
|
|
return self.out_proj(context) |
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
def __init__(self, cfg): |
|
|
super().__init__() |
|
|
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) |
|
|
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) |
|
|
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False) |
|
|
|
|
|
def forward(self, x): |
|
|
x_fc1 = self.fc1(x) |
|
|
x_fc2 = self.fc2(x) |
|
|
x = nn.functional.silu(x_fc1) * x_fc2 |
|
|
return self.fc3(x) |
|
|
|
|
|
|
|
|
class Qwen3Model(nn.Module): |
|
|
def __init__(self, cfg): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"]) |
|
|
|
|
|
self.trf_blocks = nn.ModuleList( |
|
|
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])] |
|
|
) |
|
|
|
|
|
self.final_norm = RMSNorm(cfg["emb_dim"]) |
|
|
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"]) |
|
|
|
|
|
|
|
|
if cfg["head_dim"] is None: |
|
|
head_dim = cfg["emb_dim"] // cfg["n_heads"] |
|
|
else: |
|
|
head_dim = cfg["head_dim"] |
|
|
cos, sin = compute_rope_params( |
|
|
head_dim=head_dim, |
|
|
theta_base=cfg["rope_base"], |
|
|
context_length=cfg["context_length"] |
|
|
) |
|
|
self.register_buffer("cos", cos, persistent=False) |
|
|
self.register_buffer("sin", sin, persistent=False) |
|
|
self.cfg = cfg |
|
|
|
|
|
|
|
|
def forward(self, in_idx,targets=None): |
|
|
|
|
|
tok_embeds = self.tok_emb(in_idx) |
|
|
x = tok_embeds |
|
|
|
|
|
num_tokens = x.shape[1] |
|
|
mask = torch.triu(torch.ones(num_tokens, num_tokens, device=x.device, dtype=torch.bool), diagonal=1) |
|
|
|
|
|
for block in self.trf_blocks: |
|
|
x = block(x, mask, self.cos, self.sin) |
|
|
x = self.final_norm(x) |
|
|
loss = None |
|
|
logits = self.out_head(x.to(self.cfg["dtype"])) |
|
|
|
|
|
|
|
|
|
|
|
return logits |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
|
for _ in range(max_new_tokens): |
|
|
ctx_len = self.cfg["context_length"] |
|
|
idx_cond = idx if idx.size(1) <= ctx_len else idx[:, -ctx_len:] |
|
|
logits, _ = self(idx_cond) |
|
|
logits = logits[:, -1, :] / temperature |
|
|
if top_k is not None: |
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = float("-inf") |
|
|
probs = F.softmax(logits, dim=-1) |
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
return idx |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
|
def __init__(self, cfg): |
|
|
super().__init__() |
|
|
self.att = GroupedQueryAttention( |
|
|
d_in=cfg["emb_dim"], |
|
|
num_heads=cfg["n_heads"], |
|
|
head_dim=cfg["head_dim"], |
|
|
num_kv_groups=cfg["n_kv_groups"], |
|
|
qk_norm=cfg["qk_norm"], |
|
|
dtype=cfg["dtype"] |
|
|
) |
|
|
self.ff = FeedForward(cfg) |
|
|
self.norm1 = RMSNorm(cfg["emb_dim"], eps=1e-6) |
|
|
self.norm2 = RMSNorm(cfg["emb_dim"], eps=1e-6) |
|
|
|
|
|
def forward(self, x, mask, cos, sin): |
|
|
|
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = self.att(x, mask, cos, sin) |
|
|
x = x + shortcut |
|
|
|
|
|
|
|
|
shortcut = x |
|
|
x = self.norm2(x) |
|
|
x = self.ff(x) |
|
|
x = x + shortcut |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
def generate_text_simple(model, idx, max_new_tokens, context_size, temperature): |
|
|
|
|
|
for _ in range(max_new_tokens): |
|
|
|
|
|
|
|
|
idx_cond = idx[:, -context_size:] |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
logits = model(idx_cond) |
|
|
|
|
|
|
|
|
|
|
|
logits = logits[:, -1, :] |
|
|
|
|
|
|
|
|
logits = logits / temperature |
|
|
|
|
|
|
|
|
probs = torch.softmax(logits, dim=-1) |
|
|
|
|
|
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
|
|
return idx |
|
|
|
|
|
def text_to_token_ids(text, tokenizer): |
|
|
encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'}) |
|
|
encoded_tensor = torch.tensor(encoded).unsqueeze(0) |
|
|
return encoded_tensor |
|
|
|
|
|
|
|
|
def token_ids_to_text(token_ids, tokenizer): |
|
|
flat = token_ids.squeeze(0) |
|
|
return tokenizer.decode(flat.tolist()) |
|
|
|