Spaces:
Runtime error
Runtime error
from PIL import Image | |
import streamlit as st | |
from streamlit_drawable_canvas import st_canvas | |
from streamlit_lottie import st_lottie | |
from streamlit_option_menu import option_menu | |
import requests | |
import os | |
# os.system('git clone https://github.com/lllyasviel/ControlNet.git') | |
# os.chdir('/content/ControlNet') | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
from huggingface_hub import hf_hub_download | |
from pytorch_lightning import seed_everything | |
from annotator.util import resize_image, HWC3 | |
from annotator.hed import HEDdetector, nms | |
from cldm.model import create_model, load_state_dict | |
from cldm.ddim_hacked import DDIMSampler | |
st.set_page_config( | |
page_title="ControllNet", | |
page_icon="🖥️", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
save_memory = False | |
def load_model(): | |
model_path = hf_hub_download('lllyasviel/ControlNet', 'models/control_sd15_scribble.pth') | |
model = create_model('./models/cldm_v15.yaml').cpu() | |
model.load_state_dict(load_state_dict(model_path, location='cuda')) | |
model = model.cuda() | |
return model | |
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): | |
with torch.no_grad(): | |
input_image = HWC3(input_image[:, :, 0]) | |
detected_map = apply_hed(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
detected_map = nms(detected_map, 127, 3.0) | |
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) | |
detected_map[detected_map > 4] = 255 | |
detected_map[detected_map < 255] = 0 | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} | |
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
# return [255 - detected_map] + results | |
return results | |
def load_lottieurl(url: str): | |
r = requests.get(url) | |
if r.status_code != 200: | |
return None | |
return r.json() | |
model = load_model() | |
ddim_sampler = DDIMSampler(model) | |
apply_hed = HEDdetector() | |
def main(): | |
lottie_penguin = load_lottieurl('https://assets5.lottiefiles.com/datafiles/B8q1AyJ5t1wb5S8a2ggTqYNxS1WiKN9mjS76TBpw/articulation/articulation.json') | |
st.header("Generate image with ControllNet") | |
with st.sidebar: | |
st_lottie(lottie_penguin, height=200) | |
choose = option_menu("Generate image", ["Upload", "Canvas"], | |
icons=['collection', 'file-plus'], | |
menu_icon="infinity", default_index=0, | |
styles={ | |
"container": {"padding": ".0rem", "font-size": "14px"}, | |
"nav-link-selected": {"color": "#000000", "font-size": "16px"}, | |
} | |
) | |
st.sidebar.markdown( | |
""" | |
___ | |
<p style='text-align: center'> | |
ControlNet is as fast as fine-tuning a diffusion model to support additional input conditions | |
<br/> | |
<a href="https://arxiv.org/abs/2302.05543" target="_blank">Article</a> | |
</p> | |
<p style='text-align: center; font-size: 14px;'> | |
Spaces creating by | |
<br/> | |
<a href="https://www.linkedin.com/in/vumichien/" target="_blank">Chien Vu</a> | |
<br/> | |
<img src='https://visitor-badge.glitch.me/badge?page_id=Canvas.ControlNet' alt='visitor badge'> | |
</p> | |
""", | |
unsafe_allow_html=True, | |
) | |
if choose == 'Upload': | |
with st.form(key='generate_form'): | |
upload_file = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"]) | |
prompt = st.text_input(label="Prompt", placeholder='Type your instruction') | |
col11, col12 = st.columns(2) | |
with st.expander('Advanced option', expanded=False): | |
col21, col22 = st.columns(2) | |
with col21: | |
image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256) | |
strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01) | |
guess_mode = st.checkbox(label='Guess Mode', value=False) | |
detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1) | |
ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1) | |
with col22: | |
scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1) | |
seed = st.number_input(label="Seed", min_value=-1, value=-1) | |
eta = st.number_input(label="eta (DDIM)", value=0.0) | |
a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = st.text_input(label="Negative Prompt", | |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
# generate_button = st.button('Generate Image') | |
generate_button = st.form_submit_button(label='Generate Image') | |
if upload_file: | |
# file_bytes = np.asarray(bytearray(upload_file.read()), dtype=np.uint8) | |
# imageBGR = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) | |
# input_image = cv2.cvtColor(imageBGR , cv2.COLOR_BGR2RGB) | |
input_image = np.asarray(Image.open(upload_file)) | |
print("input_image", input_image.shape) | |
if generate_button: | |
with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."): | |
results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) | |
print("input_image", input_image.shape) | |
print("results", results[0].shape) | |
H, W, C = input_image.shape | |
# output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA) | |
col11.image(input_image, channels='RGB', width=None, clamp=False, caption='Input image') | |
col12.image(results[0], channels='RGB', width=None, clamp=False, caption='Generated image') | |
elif choose == 'Canvas': | |
with st.form(key='canvas_form'): | |
# Specify canvas parameters in application | |
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3) | |
stroke_color = st.sidebar.color_picker("Stroke color hex: ") | |
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee") | |
bg_height = st.sidebar.slider("Canvas height", min_value=256, max_value=512, value=512, step=64) | |
bg_width = st.sidebar.slider("Canvas width", min_value=256, max_value=512, value=512, step=64) | |
realtime_update = st.sidebar.checkbox("Update in realtime", True) | |
# Create a canvas component | |
col31, col32 = st.columns(2) | |
with col31: | |
canvas_result = st_canvas( | |
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity | |
stroke_width=stroke_width, | |
stroke_color=stroke_color, | |
background_color=bg_color, | |
background_image=None, | |
update_streamlit=realtime_update, | |
height=bg_height, | |
width=bg_width, | |
drawing_mode="freedraw", | |
point_display_radius=0, | |
key="canvas", | |
) | |
prompt = st.text_input(label="Prompt", placeholder='Type your instruction') | |
with st.expander('Advanced option', expanded=False): | |
col41, col42 = st.columns(2) | |
with col41: | |
image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256) | |
strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01) | |
guess_mode = st.checkbox(label='Guess Mode', value=False) | |
detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1) | |
ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1) | |
with col42: | |
scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1) | |
seed = st.number_input(label="Seed", min_value=-1, value=-1) | |
eta = st.number_input(label="eta (DDIM)", value=0.0) | |
a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = st.text_input(label="Negative Prompt", | |
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') | |
# Do something interesting with the image data and paths | |
generate_button = st.form_submit_button(label='Generate Image') | |
if canvas_result.image_data is not None: | |
input_image = canvas_result.image_data | |
with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."): | |
results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) | |
H, W, C = input_image.shape | |
output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA) | |
col32.image(output_image, channels='RGB', width=384, clamp=True, caption='Generated image') | |
if __name__ == '__main__': | |
main() | |