Spaces:
Sleeping
Sleeping
import numpy as np | |
import os | |
import torch | |
from visualize.joints2smpl.src import config | |
import smplx | |
import h5py | |
from visualize.joints2smpl.src.smplify import SMPLify3D | |
from tqdm import tqdm | |
import utils.rotation_conversions as geometry | |
import argparse | |
class joints2smpl: | |
def __init__(self, num_frames, device_id, cuda=True): | |
self.device = torch.device("cuda:" + str(device_id) if cuda else "cpu") | |
# self.device = torch.device("cpu") | |
self.batch_size = num_frames | |
self.num_joints = 22 # for HumanML3D | |
self.joint_category = "AMASS" | |
self.num_smplify_iters = 150 | |
self.fix_foot = False | |
print(config.SMPL_MODEL_DIR) | |
smplmodel = smplx.create(config.SMPL_MODEL_DIR, | |
model_type="smpl", gender="neutral", ext="pkl", | |
batch_size=self.batch_size).to(self.device) | |
# ## --- load the mean pose as original ---- | |
smpl_mean_file = config.SMPL_MEAN_FILE | |
file = h5py.File(smpl_mean_file, 'r') | |
self.init_mean_pose = torch.from_numpy(file['pose'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) | |
self.init_mean_shape = torch.from_numpy(file['shape'][:]).unsqueeze(0).repeat(self.batch_size, 1).float().to(self.device) | |
self.cam_trans_zero = torch.Tensor([0.0, 0.0, 0.0]).unsqueeze(0).to(self.device) | |
# | |
# # #-------------initialize SMPLify | |
self.smplify = SMPLify3D(smplxmodel=smplmodel, | |
batch_size=self.batch_size, | |
joints_category=self.joint_category, | |
num_iters=self.num_smplify_iters, | |
device=self.device) | |
def npy2smpl(self, npy_path): | |
out_path = npy_path.replace('.npy', '_rot.npy') | |
motions = np.load(npy_path, allow_pickle=True)[None][0] | |
# print_batch('', motions) | |
n_samples = motions['motion'].shape[0] | |
all_thetas = [] | |
for sample_i in tqdm(range(n_samples)): | |
thetas, _ = self.joint2smpl(motions['motion'][sample_i].transpose(2, 0, 1)) # [nframes, njoints, 3] | |
all_thetas.append(thetas.cpu().numpy()) | |
motions['motion'] = np.concatenate(all_thetas, axis=0) | |
print('motions', motions['motion'].shape) | |
print(f'Saving [{out_path}]') | |
np.save(out_path, motions) | |
exit() | |
def joint2smpl(self, input_joints, init_params=None): | |
_smplify = self.smplify # if init_params is None else self.smplify_fast | |
pred_pose = torch.zeros(self.batch_size, 72).to(self.device) | |
pred_betas = torch.zeros(self.batch_size, 10).to(self.device) | |
pred_cam_t = torch.zeros(self.batch_size, 3).to(self.device) | |
keypoints_3d = torch.zeros(self.batch_size, self.num_joints, 3).to(self.device) | |
# run the whole seqs | |
num_seqs = input_joints.shape[0] | |
# joints3d = input_joints[idx] # *1.2 #scale problem [check first] | |
keypoints_3d = torch.Tensor(input_joints).to(self.device).float() | |
# if idx == 0: | |
if init_params is None: | |
pred_betas = self.init_mean_shape | |
pred_pose = self.init_mean_pose | |
pred_cam_t = self.cam_trans_zero | |
else: | |
pred_betas = init_params['betas'] | |
pred_pose = init_params['pose'] | |
pred_cam_t = init_params['cam'] | |
if self.joint_category == "AMASS": | |
confidence_input = torch.ones(self.num_joints) | |
# make sure the foot and ankle | |
if self.fix_foot == True: | |
confidence_input[7] = 1.5 | |
confidence_input[8] = 1.5 | |
confidence_input[10] = 1.5 | |
confidence_input[11] = 1.5 | |
else: | |
print("Such category not settle down!") | |
new_opt_vertices, new_opt_joints, new_opt_pose, new_opt_betas, \ | |
new_opt_cam_t, new_opt_joint_loss = _smplify( | |
pred_pose.detach(), | |
pred_betas.detach(), | |
pred_cam_t.detach(), | |
keypoints_3d, | |
conf_3d=confidence_input.to(self.device), | |
# seq_ind=idx | |
) | |
thetas = new_opt_pose.reshape(self.batch_size, 24, 3) | |
thetas = geometry.matrix_to_rotation_6d(geometry.axis_angle_to_matrix(thetas)) # [bs, 24, 6] | |
root_loc = torch.tensor(keypoints_3d[:, 0]) # [bs, 3] | |
root_loc = torch.cat([root_loc, torch.zeros_like(root_loc)], dim=-1).unsqueeze(1) # [bs, 1, 6] | |
thetas = torch.cat([thetas, root_loc], dim=1).unsqueeze(0).permute(0, 2, 3, 1) # [1, 25, 6, 196] | |
return thetas.clone().detach(), {'pose': new_opt_joints[0, :24].flatten().clone().detach(), 'betas': new_opt_betas.clone().detach(), 'cam': new_opt_cam_t.clone().detach()} | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--input_path", type=str, required=True, help='Blender file or dir with blender files') | |
parser.add_argument("--cuda", type=bool, default=True, help='') | |
parser.add_argument("--device", type=int, default=0, help='') | |
params = parser.parse_args() | |
simplify = joints2smpl(device_id=params.device, cuda=params.cuda) | |
if os.path.isfile(params.input_path) and params.input_path.endswith('.npy'): | |
simplify.npy2smpl(params.input_path) | |
elif os.path.isdir(params.input_path): | |
files = [os.path.join(params.input_path, f) for f in os.listdir(params.input_path) if f.endswith('.npy')] | |
for f in files: | |
simplify.npy2smpl(f) |