Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,69 +1,79 @@
|
|
| 1 |
import cv2
|
| 2 |
-
import numpy as np
|
| 3 |
import mediapipe as mp
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
# Initialize Mediapipe Pose
|
| 7 |
mp_pose = mp.solutions.pose
|
| 8 |
mp_drawing = mp.solutions.drawing_utils
|
| 9 |
-
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.5)
|
| 10 |
|
| 11 |
-
|
| 12 |
-
"""Calculate angle between three points (for body extension)."""
|
| 13 |
-
a = np.array(a) # Point A
|
| 14 |
-
b = np.array(b) # Joint (Point B)
|
| 15 |
-
c = np.array(c) # Point C
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
ba = a - b
|
| 18 |
bc = c - b
|
| 19 |
-
|
| 20 |
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
|
| 21 |
angle = np.arccos(cosine_angle)
|
| 22 |
return np.degrees(angle)
|
| 23 |
|
| 24 |
-
def
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
annotated,
|
| 36 |
-
results.pose_landmarks,
|
| 37 |
-
mp_pose.POSE_CONNECTIONS,
|
| 38 |
-
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
|
| 39 |
-
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
|
| 40 |
-
)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
h, w, _ = image.shape
|
| 44 |
-
landmarks = results.pose_landmarks.landmark
|
| 45 |
-
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x * w,
|
| 46 |
-
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y * h]
|
| 47 |
-
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x * w,
|
| 48 |
-
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y * h]
|
| 49 |
-
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x * w,
|
| 50 |
-
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y * h]
|
| 51 |
|
| 52 |
-
|
| 53 |
-
angle_text = f"Left Elbow Angle: {int(angle)}°"
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
return
|
| 59 |
|
| 60 |
-
# Gradio
|
| 61 |
demo = gr.Interface(
|
| 62 |
-
fn=
|
| 63 |
-
inputs=gr.
|
| 64 |
-
outputs=
|
| 65 |
-
title="Human Pose Estimation
|
| 66 |
-
description="Upload
|
| 67 |
)
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import cv2
|
|
|
|
| 2 |
import mediapipe as mp
|
| 3 |
+
import numpy as np
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
| 6 |
mp_pose = mp.solutions.pose
|
| 7 |
mp_drawing = mp.solutions.drawing_utils
|
|
|
|
| 8 |
|
| 9 |
+
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
def calculate_angle(a, b, c):
|
| 12 |
+
a = np.array(a)
|
| 13 |
+
b = np.array(b)
|
| 14 |
+
c = np.array(c)
|
| 15 |
ba = a - b
|
| 16 |
bc = c - b
|
|
|
|
| 17 |
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
|
| 18 |
angle = np.arccos(cosine_angle)
|
| 19 |
return np.degrees(angle)
|
| 20 |
|
| 21 |
+
def detect_pose_video(video_path):
|
| 22 |
+
cap = cv2.VideoCapture(video_path)
|
| 23 |
+
output_frames = []
|
| 24 |
+
|
| 25 |
+
while True:
|
| 26 |
+
ret, frame = cap.read()
|
| 27 |
+
if not ret:
|
| 28 |
+
break
|
| 29 |
+
|
| 30 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 31 |
+
results = pose.process(frame_rgb)
|
| 32 |
+
|
| 33 |
+
if results.pose_landmarks:
|
| 34 |
+
mp_drawing.draw_landmarks(
|
| 35 |
+
frame,
|
| 36 |
+
results.pose_landmarks,
|
| 37 |
+
mp_pose.POSE_CONNECTIONS,
|
| 38 |
+
mp_drawing.DrawingSpec(color=(0,255,0), thickness=2, circle_radius=2),
|
| 39 |
+
mp_drawing.DrawingSpec(color=(0,0,255), thickness=2)
|
| 40 |
+
)
|
| 41 |
|
| 42 |
+
# Example: left elbow angle
|
| 43 |
+
h, w, _ = frame.shape
|
| 44 |
+
landmarks = results.pose_landmarks.landmark
|
| 45 |
+
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x * w,
|
| 46 |
+
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y * h]
|
| 47 |
+
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x * w,
|
| 48 |
+
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y * h]
|
| 49 |
+
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x * w,
|
| 50 |
+
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y * h]
|
| 51 |
|
| 52 |
+
angle = calculate_angle(shoulder, elbow, wrist)
|
| 53 |
+
cv2.putText(frame, f"Left Elbow: {int(angle)} deg", (20,40),
|
| 54 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,0), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
output_frames.append(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
cap.release()
|
|
|
|
| 59 |
|
| 60 |
+
# Convert frames to video file
|
| 61 |
+
out_path = "annotated_video.mp4"
|
| 62 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 63 |
+
out = cv2.VideoWriter(out_path, fourcc, 20.0, (frame.shape[1], frame.shape[0]))
|
| 64 |
+
for f in output_frames:
|
| 65 |
+
out.write(f)
|
| 66 |
+
out.release()
|
| 67 |
|
| 68 |
+
return out_path
|
| 69 |
|
| 70 |
+
# Gradio interface
|
| 71 |
demo = gr.Interface(
|
| 72 |
+
fn=detect_pose_video,
|
| 73 |
+
inputs=gr.Video(label="Upload Video"),
|
| 74 |
+
outputs=gr.Video(label="Annotated Video"),
|
| 75 |
+
title="Human Pose Estimation on Video",
|
| 76 |
+
description="Upload a video and see pose landmarks & joint angles detected in real-time."
|
| 77 |
)
|
| 78 |
|
| 79 |
if __name__ == "__main__":
|