vsrinivas's picture
Update app.py
08ef3ae
raw
history blame
2.3 kB
import gradio as gr
from transformers import pipeline
import torch
from diffusers import DiffusionPipeline
def get_completion(prompt,params):
# return pipeline(prompt=prompt, height=params['height'], width=params['width'], num_inference_steps=int(params['num_inference_steps']), guidance_scale=params['guidance_scale'])['sample'][0]
return pipeline(prompt=prompt, height=params['height'], width=params['width'], num_inference_steps=int(params['num_inference_steps']), guidance_scale=params['guidance_scale']).images[0]
def generate(prompt,steps,guidance,width,height):
params = {
"num_inference_steps": steps,
"guidance_scale": guidance,
"width": width,
"height": height
}
output = get_completion(prompt,params)
return output
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
with gr.Blocks() as demo:
gr.Markdown("# Image Generation Demo & Test App by Srinivas")
gr.Markdown("## Generates an Image based on Your Promt inputted and Optional parameters selected")
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Textbox(label="Your Prompt") #Give prompt some real estate
with gr.Column(scale=1, min_width=50):
btn = gr.Button("Submit") #Submit button side by side!
with gr.Accordion("Advanced options", open=False): #Let's hide the advanced options!
# negative_prompt = gr.Textbox(label="Negative prompt")
with gr.Row():
with gr.Column():
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=25,
info="In many steps will the denoiser denoise the image?")
guidance = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=7.0,
info="Controls how much the text prompt influences the result")
with gr.Column():
width = gr.Slider(label="Width", minimum=64, maximum=512, step=64, value=512)
height = gr.Slider(label="Height", minimum=64, maximum=512, step=64, value=512)
output = gr.Image(label="Result") #Move the output up too
btn.click(fn=generate, inputs=[prompt,steps,guidance,width,height], outputs=[output])
demo.launch()