vpkrishna commited on
Commit
f9f4bcb
1 Parent(s): e40bde9

Add initial project files

Browse files
Files changed (8) hide show
  1. .env.sample +5 -0
  2. .gitignore +6 -0
  3. Dockerfile +11 -0
  4. app.py +151 -0
  5. chainlit.md +1 -0
  6. data/airbnb_10k.pdf +0 -0
  7. requirements.txt +101 -0
  8. solution_app.py +155 -0
.env.sample ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
2
+ HF_LLM_ENDPOINT="YOUR_LLM_ENDPOINT_URL_HERE"
3
+ HF_EMBED_ENDPOINT="YOUR_EMBED_MODEL_ENDPOINT_URL_HERE"
4
+ HF_TOKEN="YOUR_HF_TOKEN_HERE"
5
+ # !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .env
2
+ __pycache__/
3
+ .chainlit
4
+ *.faiss
5
+ *.pkl
6
+ .files
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import PyMuPDFLoader
7
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import Qdrant
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # Load environment variables from .env file
16
+ load_dotenv()
17
+
18
+ # Load HuggingFace environment variables
19
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
20
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
21
+ HF_TOKEN = os.environ["HF_TOKEN"]
22
+
23
+ print("HF_LLM_ENDPOINT", HF_LLM_ENDPOINT)
24
+
25
+ # Load HuggingFace Embeddings
26
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
27
+ model=HF_EMBED_ENDPOINT,
28
+ task="feature-extraction",
29
+ huggingfacehub_api_token=HF_TOKEN,
30
+ )
31
+
32
+ # Load the PDF document
33
+ documents = PyMuPDFLoader("./data/airbnb_10k.pdf").load()
34
+
35
+
36
+ ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
37
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
38
+ split_documents = text_splitter.split_documents(documents)
39
+
40
+ ### 3. LOAD HUGGINGFACE EMBEDDINGS
41
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
42
+ model=HF_EMBED_ENDPOINT,
43
+ task="feature-extraction",
44
+ huggingfacehub_api_token=HF_TOKEN,
45
+ )
46
+
47
+
48
+ # Create a Qdrant vector store from the split documents
49
+ qdrant_vectorstore = Qdrant.from_documents(
50
+ split_documents,
51
+ hf_embeddings,
52
+ location=":memory:",
53
+ collection_name="Airbnb 10k filings",
54
+ batch_size=32
55
+ )
56
+
57
+ # Create a retriever from the vector store
58
+ qdrant_retriever = qdrant_vectorstore.as_retriever()
59
+
60
+
61
+ # -- AUGMENTED -- #
62
+ """
63
+ 1. Define a String Template
64
+ 2. Create a Prompt Template from the String Template
65
+ """
66
+ ### 1. DEFINE STRING TEMPLATE
67
+ RAG_PROMPT_TEMPLATE = """\
68
+ <|start_header_id|>system<|end_header_id|>
69
+ You are a helpful assistant. Yo are a financial expert . you understand 10k fillings very well. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
70
+
71
+ <|start_header_id|>user<|end_header_id|>
72
+ User Query:
73
+ {query}
74
+
75
+ Context:
76
+ {context}<|eot_id|>
77
+
78
+ <|start_header_id|>assistant<|end_header_id|>
79
+ """
80
+
81
+ ### 2. CREATE PROMPT TEMPLATE
82
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
83
+
84
+ # -- GENERATION -- #
85
+ """
86
+ 1. Create a HuggingFaceEndpoint for the LLM
87
+ """
88
+ ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
89
+ hf_llm = HuggingFaceEndpoint(
90
+ endpoint_url=HF_LLM_ENDPOINT,
91
+ max_new_tokens=512,
92
+ top_k=10,
93
+ top_p=0.95,
94
+ temperature=0.3,
95
+ repetition_penalty=1.15,
96
+ huggingfacehub_api_token=HF_TOKEN,
97
+ )
98
+
99
+
100
+
101
+ @cl.author_rename
102
+ def rename(original_author: str):
103
+ """
104
+ This function can be used to rename the 'author' of a message.
105
+
106
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
107
+ """
108
+ rename_dict = {
109
+ "Assistant" : "AirBNB 10K Bot"
110
+ }
111
+ return rename_dict.get(original_author, original_author)
112
+
113
+ @cl.on_chat_start
114
+ async def start_chat():
115
+ """
116
+ This function will be called at the start of every user session.
117
+
118
+ We will build our LCEL RAG chain here, and store it in the user session.
119
+
120
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
121
+ """
122
+
123
+ ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
124
+ cl.user_session.set("welcome_message", "Wonderful folks, Welcome to the chat! Hope all your questions are answered ")
125
+
126
+ lcel_rag_chain = (
127
+ {"context": itemgetter("query") | qdrant_retriever, "query": itemgetter("query")}
128
+ | rag_prompt | hf_llm
129
+ )
130
+
131
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
132
+
133
+ @cl.on_message
134
+ async def main(message: cl.Message):
135
+ """
136
+ This function will be called every time a message is recieved from a session.
137
+ We will use the LCEL RAG chain to generate a response to the user query.
138
+
139
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
140
+ """
141
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
142
+
143
+ msg = cl.Message(content="")
144
+
145
+ async for chunk in lcel_rag_chain.astream(
146
+ {"query": message.content},
147
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
148
+ ):
149
+ await msg.stream_token(chunk)
150
+
151
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1 @@
 
 
1
+ Welcome to Worlds best interactive chat bot on Airbnb 10k fillings
data/airbnb_10k.pdf ADDED
Binary file (596 kB). View file
 
requirements.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiofiles==23.2.1
2
+ aiohttp==3.9.5
3
+ aiosignal==1.3.1
4
+ annotated-types==0.7.0
5
+ anyio==3.7.1
6
+ asyncer==0.0.2
7
+ attrs==23.2.0
8
+ bidict==0.23.1
9
+ certifi==2024.6.2
10
+ chainlit==1.1.302
11
+ charset-normalizer==3.3.2
12
+ chevron==0.14.0
13
+ click==8.1.7
14
+ dataclasses-json==0.5.14
15
+ Deprecated==1.2.14
16
+ distro==1.9.0
17
+ fastapi==0.110.3
18
+ fastapi-socketio==0.0.10
19
+ filetype==1.2.0
20
+ frozenlist==1.4.1
21
+ googleapis-common-protos==1.63.1
22
+ greenlet==3.0.3
23
+ groq==0.9.0
24
+ grpcio==1.64.1
25
+ grpcio-tools==1.62.2
26
+ h11==0.14.0
27
+ h2==4.1.0
28
+ hpack==4.0.0
29
+ httpcore==0.17.3
30
+ httpx==0.24.1
31
+ hyperframe==6.0.1
32
+ idna==3.7
33
+ importlib_metadata==7.1.0
34
+ jsonpatch==1.33
35
+ jsonpointer==3.0.0
36
+ langchain==0.2.5
37
+ langchain-core==0.2.9
38
+ langchain-groq==0.1.5
39
+ langchain-openai==0.1.8
40
+ langchain-qdrant==0.1.1
41
+ langchain-text-splitters==0.2.1
42
+ langchainhub==0.1.20
43
+ langchain_community==0.2.5
44
+ langchain_huggingface==0.0.3
45
+ langchain_text_splitters==0.2.1
46
+ langsmith==0.1.81
47
+ Lazify==0.4.0
48
+ literalai==0.0.604
49
+ marshmallow==3.21.3
50
+ multidict==6.0.5
51
+ mypy-extensions==1.0.0
52
+ nest-asyncio==1.6.0
53
+ numpy==1.26.4
54
+ openai==1.34.0
55
+ opentelemetry-api==1.25.0
56
+ opentelemetry-exporter-otlp==1.25.0
57
+ opentelemetry-exporter-otlp-proto-common==1.25.0
58
+ opentelemetry-exporter-otlp-proto-grpc==1.25.0
59
+ opentelemetry-exporter-otlp-proto-http==1.25.0
60
+ opentelemetry-instrumentation==0.46b0
61
+ opentelemetry-proto==1.25.0
62
+ opentelemetry-sdk==1.25.0
63
+ opentelemetry-semantic-conventions==0.46b0
64
+ orjson==3.10.5
65
+ packaging==23.2
66
+ portalocker==2.8.2
67
+ protobuf==4.25.3
68
+ pydantic==2.7.4
69
+ pydantic_core==2.18.4
70
+ PyJWT==2.8.0
71
+ python-dotenv==1.0.1
72
+ python-engineio==4.9.1
73
+ python-graphql-client==0.4.3
74
+ python-multipart==0.0.9
75
+ python-socketio==5.11.3
76
+ PyYAML==6.0.1
77
+ pymupdf==1.24.6
78
+ qdrant-client==1.9.1
79
+ regex==2024.5.15
80
+ requests==2.32.3
81
+ simple-websocket==1.0.0
82
+ sniffio==1.3.1
83
+ SQLAlchemy==2.0.31
84
+ starlette==0.37.2
85
+ syncer==2.0.3
86
+ tenacity==8.4.1
87
+ tiktoken==0.7.0
88
+ tomli==2.0.1
89
+ tqdm==4.66.4
90
+ types-requests==2.32.0.20240602
91
+ typing-inspect==0.9.0
92
+ typing_extensions==4.12.2
93
+ uptrace==1.24.0
94
+ urllib3==2.2.2
95
+ uvicorn==0.25.0
96
+ watchfiles==0.20.0
97
+ websockets==12.0
98
+ wrapt==1.16.0
99
+ wsproto==1.2.0
100
+ yarl==1.9.4
101
+ zipp==3.19.2
solution_app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
16
+ # ---- ENV VARIABLES ---- #
17
+ """
18
+ This function will load our environment file (.env) if it is present.
19
+
20
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
21
+ """
22
+ load_dotenv()
23
+
24
+ """
25
+ We will load our environment variables here.
26
+ """
27
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
28
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
29
+ HF_TOKEN = os.environ["HF_TOKEN"]
30
+
31
+ # ---- GLOBAL DECLARATIONS ---- #
32
+
33
+ # -- RETRIEVAL -- #
34
+ """
35
+ 1. Load Documents from Text File
36
+ 2. Split Documents into Chunks
37
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
38
+ 4. Index Files if they do not exist, otherwise load the vectorstore
39
+ """
40
+ document_loader = TextLoader("./data/paul_graham_essays.txt")
41
+ documents = document_loader.load()
42
+
43
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
44
+ split_documents = text_splitter.split_documents(documents)
45
+
46
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
47
+ model=HF_EMBED_ENDPOINT,
48
+ task="feature-extraction",
49
+ huggingfacehub_api_token=HF_TOKEN,
50
+ )
51
+
52
+ if os.path.exists("./data/vectorstore"):
53
+ vectorstore = FAISS.load_local(
54
+ "./data/vectorstore",
55
+ hf_embeddings,
56
+ allow_dangerous_deserialization=True # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
57
+ )
58
+ hf_retriever = vectorstore.as_retriever()
59
+ print("Loaded Vectorstore")
60
+ else:
61
+ print("Indexing Files")
62
+ os.makedirs("./data/vectorstore", exist_ok=True)
63
+ for i in range(0, len(split_documents), 32):
64
+ if i == 0:
65
+ vectorstore = FAISS.from_documents(split_documents[i:i+32], hf_embeddings)
66
+ continue
67
+ vectorstore.add_documents(split_documents[i:i+32])
68
+ vectorstore.save_local("./data/vectorstore")
69
+
70
+ hf_retriever = vectorstore.as_retriever()
71
+
72
+ # -- AUGMENTED -- #
73
+ """
74
+ 1. Define a String Template
75
+ 2. Create a Prompt Template from the String Template
76
+ """
77
+ RAG_PROMPT_TEMPLATE = """\
78
+ <|start_header_id|>system<|end_header_id|>
79
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
80
+
81
+ <|start_header_id|>user<|end_header_id|>
82
+ User Query:
83
+ {query}
84
+
85
+ Context:
86
+ {context}<|eot_id|>
87
+
88
+ <|start_header_id|>assistant<|end_header_id|>
89
+ """
90
+
91
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
92
+
93
+ # -- GENERATION -- #
94
+ """
95
+ 1. Create a HuggingFaceEndpoint for the LLM
96
+ """
97
+ hf_llm = HuggingFaceEndpoint(
98
+ endpoint_url=HF_LLM_ENDPOINT,
99
+ max_new_tokens=512,
100
+ top_k=10,
101
+ top_p=0.95,
102
+ temperature=0.3,
103
+ repetition_penalty=1.15,
104
+ huggingfacehub_api_token=HF_TOKEN,
105
+ )
106
+
107
+ @cl.author_rename
108
+ def rename(original_author: str):
109
+ """
110
+ This function can be used to rename the 'author' of a message.
111
+
112
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
113
+ """
114
+ rename_dict = {
115
+ "Assistant" : "Paul Graham Essay Bot"
116
+ }
117
+ return rename_dict.get(original_author, original_author)
118
+
119
+ @cl.on_chat_start
120
+ async def start_chat():
121
+ """
122
+ This function will be called at the start of every user session.
123
+
124
+ We will build our LCEL RAG chain here, and store it in the user session.
125
+
126
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
127
+ """
128
+
129
+ lcel_rag_chain = (
130
+ {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
131
+ | rag_prompt | hf_llm
132
+ )
133
+
134
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
135
+
136
+ @cl.on_message
137
+ async def main(message: cl.Message):
138
+ """
139
+ This function will be called every time a message is recieved from a session.
140
+
141
+ We will use the LCEL RAG chain to generate a response to the user query.
142
+
143
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
144
+ """
145
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
146
+
147
+ msg = cl.Message(content="")
148
+
149
+ for chunk in await cl.make_async(lcel_rag_chain.stream)(
150
+ {"query": message.content},
151
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
152
+ ):
153
+ await msg.stream_token(chunk)
154
+
155
+ await msg.send()