Spaces:
Paused
Paused
| import { | |
| HF_TOKEN, | |
| HF_API_ROOT, | |
| MODELS, | |
| OLD_MODELS, | |
| TASK_MODEL, | |
| HF_ACCESS_TOKEN, | |
| } from "$env/static/private"; | |
| import type { ChatTemplateInput } from "$lib/types/Template"; | |
| import { compileTemplate } from "$lib/utils/template"; | |
| import { z } from "zod"; | |
| import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints"; | |
| import endpointTgi from "./endpoints/tgi/endpointTgi"; | |
| import { sum } from "$lib/utils/sum"; | |
| import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels"; | |
| import type { PreTrainedTokenizer } from "@xenova/transformers"; | |
| import JSON5 from "json5"; | |
| import { getTokenizer } from "$lib/utils/getTokenizer"; | |
| import { logger } from "$lib/server/logger"; | |
| type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>; | |
| const modelConfig = z.object({ | |
| /** Used as an identifier in DB */ | |
| id: z.string().optional(), | |
| /** Used to link to the model page, and for inference */ | |
| name: z.string().default(""), | |
| displayName: z.string().min(1).optional(), | |
| description: z.string().min(1).optional(), | |
| logoUrl: z.string().url().optional(), | |
| websiteUrl: z.string().url().optional(), | |
| modelUrl: z.string().url().optional(), | |
| tokenizer: z | |
| .union([ | |
| z.string(), | |
| z.object({ | |
| tokenizerUrl: z.string().url(), | |
| tokenizerConfigUrl: z.string().url(), | |
| }), | |
| ]) | |
| .optional(), | |
| datasetName: z.string().min(1).optional(), | |
| datasetUrl: z.string().url().optional(), | |
| preprompt: z.string().default(""), | |
| prepromptUrl: z.string().url().optional(), | |
| chatPromptTemplate: z.string().optional(), | |
| promptExamples: z | |
| .array( | |
| z.object({ | |
| title: z.string().min(1), | |
| prompt: z.string().min(1), | |
| }) | |
| ) | |
| .optional(), | |
| endpoints: z.array(endpointSchema).optional(), | |
| parameters: z | |
| .object({ | |
| temperature: z.number().min(0).max(1).optional(), | |
| truncate: z.number().int().positive().optional(), | |
| max_new_tokens: z.number().int().positive().optional(), | |
| stop: z.array(z.string()).optional(), | |
| top_p: z.number().positive().optional(), | |
| top_k: z.number().positive().optional(), | |
| repetition_penalty: z.number().min(-2).max(2).optional(), | |
| }) | |
| .passthrough() | |
| .optional(), | |
| multimodal: z.boolean().default(false), | |
| unlisted: z.boolean().default(false), | |
| embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(), | |
| }); | |
| const modelsRaw = z.array(modelConfig).parse(JSON5.parse(MODELS)); | |
| async function getChatPromptRender( | |
| m: z.infer<typeof modelConfig> | |
| ): Promise<ReturnType<typeof compileTemplate<ChatTemplateInput>>> { | |
| if (m.chatPromptTemplate) { | |
| return compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m); | |
| } | |
| let tokenizer: PreTrainedTokenizer; | |
| if (!m.tokenizer) { | |
| return compileTemplate<ChatTemplateInput>( | |
| "{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}", | |
| m | |
| ); | |
| } | |
| try { | |
| tokenizer = await getTokenizer(m.tokenizer); | |
| } catch (e) { | |
| logger.error( | |
| "Failed to load tokenizer for model " + | |
| m.name + | |
| " consider setting chatPromptTemplate manually or making sure the model is available on the hub. Error: " + | |
| (e as Error).message | |
| ); | |
| process.exit(); | |
| } | |
| const renderTemplate = ({ messages, preprompt }: ChatTemplateInput) => { | |
| let formattedMessages: { role: string; content: string }[] = messages.map((message) => ({ | |
| content: message.content, | |
| role: message.from, | |
| })); | |
| if (preprompt) { | |
| formattedMessages = [ | |
| { | |
| role: "system", | |
| content: preprompt, | |
| }, | |
| ...formattedMessages, | |
| ]; | |
| } | |
| const output = tokenizer.apply_chat_template(formattedMessages, { | |
| tokenize: false, | |
| add_generation_prompt: true, | |
| }); | |
| if (typeof output !== "string") { | |
| throw new Error("Failed to apply chat template, the output is not a string"); | |
| } | |
| return output; | |
| }; | |
| return renderTemplate; | |
| } | |
| const processModel = async (m: z.infer<typeof modelConfig>) => ({ | |
| ...m, | |
| chatPromptRender: await getChatPromptRender(m), | |
| id: m.id || m.name, | |
| displayName: m.displayName || m.name, | |
| preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt, | |
| parameters: { ...m.parameters, stop_sequences: m.parameters?.stop }, | |
| }); | |
| const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({ | |
| ...m, | |
| getEndpoint: async (): Promise<Endpoint> => { | |
| if (!m.endpoints) { | |
| return endpointTgi({ | |
| type: "tgi", | |
| url: `${HF_API_ROOT}/${m.name}`, | |
| accessToken: HF_TOKEN ?? HF_ACCESS_TOKEN, | |
| weight: 1, | |
| model: m, | |
| }); | |
| } | |
| const totalWeight = sum(m.endpoints.map((e) => e.weight)); | |
| let random = Math.random() * totalWeight; | |
| for (const endpoint of m.endpoints) { | |
| if (random < endpoint.weight) { | |
| const args = { ...endpoint, model: m }; | |
| switch (args.type) { | |
| case "tgi": | |
| return endpoints.tgi(args); | |
| case "anthropic": | |
| return endpoints.anthropic(args); | |
| case "aws": | |
| return await endpoints.aws(args); | |
| case "openai": | |
| return await endpoints.openai(args); | |
| case "llamacpp": | |
| return endpoints.llamacpp(args); | |
| case "ollama": | |
| return endpoints.ollama(args); | |
| case "vertex": | |
| return await endpoints.vertex(args); | |
| case "cloudflare": | |
| return await endpoints.cloudflare(args); | |
| case "cohere": | |
| return await endpoints.cohere(args); | |
| case "langserve": | |
| return await endpoints.langserve(args); | |
| default: | |
| // for legacy reason | |
| return endpoints.tgi(args); | |
| } | |
| } | |
| random -= endpoint.weight; | |
| } | |
| throw new Error(`Failed to select endpoint`); | |
| }, | |
| }); | |
| export const models = await Promise.all(modelsRaw.map((e) => processModel(e).then(addEndpoint))); | |
| export const defaultModel = models[0]; | |
| // Models that have been deprecated | |
| export const oldModels = OLD_MODELS | |
| ? z | |
| .array( | |
| z.object({ | |
| id: z.string().optional(), | |
| name: z.string().min(1), | |
| displayName: z.string().min(1).optional(), | |
| }) | |
| ) | |
| .parse(JSON5.parse(OLD_MODELS)) | |
| .map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name })) | |
| : []; | |
| export const validateModel = (_models: BackendModel[]) => { | |
| // Zod enum function requires 2 parameters | |
| return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]); | |
| }; | |
| // if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself | |
| export const smallModel = TASK_MODEL | |
| ? (models.find((m) => m.name === TASK_MODEL) || | |
| (await processModel(modelConfig.parse(JSON5.parse(TASK_MODEL))).then((m) => | |
| addEndpoint(m) | |
| ))) ?? | |
| defaultModel | |
| : defaultModel; | |
| export type BackendModel = Optional< | |
| typeof defaultModel, | |
| "preprompt" | "parameters" | "multimodal" | "unlisted" | |
| >; | |