Spaces:
Paused
Paused
| import { | |
| HF_TOKEN, | |
| HF_API_ROOT, | |
| MODELS, | |
| OLD_MODELS, | |
| TASK_MODEL, | |
| HF_ACCESS_TOKEN, | |
| } from "$env/static/private"; | |
| import type { ChatTemplateInput } from "$lib/types/Template"; | |
| import { compileTemplate } from "$lib/utils/template"; | |
| import { z } from "zod"; | |
| import endpoints, { endpointSchema, type Endpoint } from "./endpoints/endpoints"; | |
| import endpointTgi from "./endpoints/tgi/endpointTgi"; | |
| import { sum } from "$lib/utils/sum"; | |
| import { embeddingModels, validateEmbeddingModelByName } from "./embeddingModels"; | |
| import JSON5 from "json5"; | |
| type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>; | |
| const modelConfig = z.object({ | |
| /** Used as an identifier in DB */ | |
| id: z.string().optional(), | |
| /** Used to link to the model page, and for inference */ | |
| name: z.string().min(1), | |
| displayName: z.string().min(1).optional(), | |
| description: z.string().min(1).optional(), | |
| websiteUrl: z.string().url().optional(), | |
| modelUrl: z.string().url().optional(), | |
| datasetName: z.string().min(1).optional(), | |
| datasetUrl: z.string().url().optional(), | |
| userMessageToken: z.string().default(""), | |
| userMessageEndToken: z.string().default(""), | |
| assistantMessageToken: z.string().default(""), | |
| assistantMessageEndToken: z.string().default(""), | |
| messageEndToken: z.string().default(""), | |
| preprompt: z.string().default(""), | |
| prepromptUrl: z.string().url().optional(), | |
| chatPromptTemplate: z | |
| .string() | |
| .default( | |
| "{{preprompt}}" + | |
| "{{#each messages}}" + | |
| "{{#ifUser}}{{@root.userMessageToken}}{{content}}{{@root.userMessageEndToken}}{{/ifUser}}" + | |
| "{{#ifAssistant}}{{@root.assistantMessageToken}}{{content}}{{@root.assistantMessageEndToken}}{{/ifAssistant}}" + | |
| "{{/each}}" + | |
| "{{assistantMessageToken}}" | |
| ), | |
| promptExamples: z | |
| .array( | |
| z.object({ | |
| title: z.string().min(1), | |
| prompt: z.string().min(1), | |
| }) | |
| ) | |
| .optional(), | |
| endpoints: z.array(endpointSchema).optional(), | |
| parameters: z | |
| .object({ | |
| temperature: z.number().min(0).max(1), | |
| truncate: z.number().int().positive().optional(), | |
| max_new_tokens: z.number().int().positive(), | |
| stop: z.array(z.string()).optional(), | |
| top_p: z.number().positive().optional(), | |
| top_k: z.number().positive().optional(), | |
| repetition_penalty: z.number().min(-2).max(2).optional(), | |
| }) | |
| .passthrough() | |
| .optional(), | |
| multimodal: z.boolean().default(false), | |
| unlisted: z.boolean().default(false), | |
| embeddingModel: validateEmbeddingModelByName(embeddingModels).optional(), | |
| }); | |
| const modelsRaw = z.array(modelConfig).parse(JSON5.parse(MODELS)); | |
| const processModel = async (m: z.infer<typeof modelConfig>) => ({ | |
| ...m, | |
| userMessageEndToken: m?.userMessageEndToken || m?.messageEndToken, | |
| assistantMessageEndToken: m?.assistantMessageEndToken || m?.messageEndToken, | |
| chatPromptRender: compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m), | |
| id: m.id || m.name, | |
| displayName: m.displayName || m.name, | |
| preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt, | |
| parameters: { ...m.parameters, stop_sequences: m.parameters?.stop }, | |
| }); | |
| const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({ | |
| ...m, | |
| getEndpoint: async (): Promise<Endpoint> => { | |
| if (!m.endpoints) { | |
| return endpointTgi({ | |
| type: "tgi", | |
| url: `${HF_API_ROOT}/${m.name}`, | |
| accessToken: HF_TOKEN ?? HF_ACCESS_TOKEN, | |
| weight: 1, | |
| model: m, | |
| }); | |
| } | |
| const totalWeight = sum(m.endpoints.map((e) => e.weight)); | |
| let random = Math.random() * totalWeight; | |
| for (const endpoint of m.endpoints) { | |
| if (random < endpoint.weight) { | |
| const args = { ...endpoint, model: m }; | |
| switch (args.type) { | |
| case "tgi": | |
| return endpoints.tgi(args); | |
| case "aws": | |
| return await endpoints.aws(args); | |
| case "openai": | |
| return await endpoints.openai(args); | |
| case "llamacpp": | |
| return endpoints.llamacpp(args); | |
| case "ollama": | |
| return endpoints.ollama(args); | |
| default: | |
| // for legacy reason | |
| return endpoints.tgi(args); | |
| } | |
| } | |
| random -= endpoint.weight; | |
| } | |
| throw new Error(`Failed to select endpoint`); | |
| }, | |
| }); | |
| export const models = await Promise.all(modelsRaw.map((e) => processModel(e).then(addEndpoint))); | |
| export const defaultModel = models[0]; | |
| // Models that have been deprecated | |
| export const oldModels = OLD_MODELS | |
| ? z | |
| .array( | |
| z.object({ | |
| id: z.string().optional(), | |
| name: z.string().min(1), | |
| displayName: z.string().min(1).optional(), | |
| }) | |
| ) | |
| .parse(JSON5.parse(OLD_MODELS)) | |
| .map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name })) | |
| : []; | |
| export const validateModel = (_models: BackendModel[]) => { | |
| // Zod enum function requires 2 parameters | |
| return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]); | |
| }; | |
| // if `TASK_MODEL` is string & name of a model in `MODELS`, then we use `MODELS[TASK_MODEL]`, else we try to parse `TASK_MODEL` as a model config itself | |
| export const smallModel = TASK_MODEL | |
| ? (models.find((m) => m.name === TASK_MODEL) || | |
| (await processModel(modelConfig.parse(JSON5.parse(TASK_MODEL))).then((m) => | |
| addEndpoint(m) | |
| ))) ?? | |
| defaultModel | |
| : defaultModel; | |
| export type BackendModel = Optional< | |
| typeof defaultModel, | |
| "preprompt" | "parameters" | "multimodal" | "unlisted" | |
| >; | |