Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
ACCESS_TOKEN = os.getenv("HF_TOKEN", "") | |
model_id = "HuggingFaceTB/SmolLM-1.7B-Instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True, | |
token=ACCESS_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
token=ACCESS_TOKEN) | |
tokenizer.use_default_system_prompt = False | |
model.config.gradient_checkpointing = True | |
def generate( | |
message: str, | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.01, | |
top_p: float = 1.00, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
''' | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
''' | |
streamer = TextIteratorStreamer(tokenizer, timeout=600.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
#eos_token_id=terminators, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
num_beams=1, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Prompt", label="Prompt"), | |
], | |
outputs="text", | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.01, | |
value=0.01, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.01, | |
value=1.0, | |
), | |
], | |
title="Model testing - HuggingFaceTB/SmolLM-1.7B-Instruct", | |
description="Provide system settings and a prompt to interact with the model.", | |
) | |
chat_interface.queue(max_size=20).launch() | |