Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import cv2
|
| 4 |
+
import traceback
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import SamModel, SamProcessor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
model = SamModel.from_pretrained('facebook/sam-vit-huge')
|
| 10 |
+
processor = SamProcessor.from_pretrained('facebook/sam-vit-huge')
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def set_predictor(image):
|
| 14 |
+
"""
|
| 15 |
+
Creates a Sam predictor object based on a given image and model.
|
| 16 |
+
"""
|
| 17 |
+
device = 'cpu'
|
| 18 |
+
inputs = processor(image, return_tensors='pt').to(device)
|
| 19 |
+
image_embedding = model.get_image_embeddings(inputs['pixel_values'])
|
| 20 |
+
|
| 21 |
+
return [image, image_embedding, 'Done']
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_polygon(points, image, image_embedding):
|
| 25 |
+
"""
|
| 26 |
+
Returns the points of the polygon given a bounding box and a prediction
|
| 27 |
+
made by Sam, or if an exception was triggered, it returns such exception.
|
| 28 |
+
"""
|
| 29 |
+
points = [int(w) for w in points.split(',')]
|
| 30 |
+
|
| 31 |
+
device = 'cpu'
|
| 32 |
+
inputs = processor(image, input_boxes=[points], return_tensors="pt").to(device)
|
| 33 |
+
|
| 34 |
+
# pop the pixel_values as they are not neded
|
| 35 |
+
inputs.pop("pixel_values", None)
|
| 36 |
+
inputs.update({"image_embeddings": image_embedding})
|
| 37 |
+
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
+
|
| 41 |
+
masks = processor.image_processor.post_process_masks(
|
| 42 |
+
outputs.pred_masks.cpu(),
|
| 43 |
+
inputs["original_sizes"].cpu(),
|
| 44 |
+
inputs["reshaped_input_sizes"].cpu()
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
mask = masks[0].squeeze().numpy()
|
| 48 |
+
|
| 49 |
+
img = mask.astype(np.uint8)[0]
|
| 50 |
+
|
| 51 |
+
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 52 |
+
points = contours[0]
|
| 53 |
+
|
| 54 |
+
polygon = []
|
| 55 |
+
for point in points:
|
| 56 |
+
for x, y in point:
|
| 57 |
+
polygon.append([int(x), int(y)])
|
| 58 |
+
|
| 59 |
+
return polygon
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
with gr.Blocks() as app:
|
| 64 |
+
image = gr.State()
|
| 65 |
+
embedding = gr.State()
|
| 66 |
+
|
| 67 |
+
with gr.Tab('Get embedding'):
|
| 68 |
+
input_image = gr.Image(label='Image')
|
| 69 |
+
output_status = gr.Textbox(label='Status')
|
| 70 |
+
predictor_button = gr.Button('Send Image')
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
with gr.Tab('Get points'):
|
| 74 |
+
bbox = gr.Textbox(label="bbox")
|
| 75 |
+
polygon = [gr.Textbox(label='Polygon')]
|
| 76 |
+
points_button = gr.Button('Send bounding box')
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
predictor_button.click(
|
| 80 |
+
set_predictor,
|
| 81 |
+
input_image,
|
| 82 |
+
[image, embedding, output_status],
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
points_button.click(
|
| 86 |
+
get_polygon,
|
| 87 |
+
[bbox, image, embedding],
|
| 88 |
+
polygon,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
app.queue()
|
| 92 |
+
app.launch(debug=True)
|