Update app.py
Browse files
app.py
CHANGED
|
@@ -5,22 +5,25 @@ import torch
|
|
| 5 |
import traceback
|
| 6 |
import numpy as np
|
| 7 |
from itertools import chain
|
| 8 |
-
from
|
| 9 |
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
|
| 15 |
def set_predictor(image):
|
| 16 |
"""
|
| 17 |
Creates a Sam predictor object based on a given image and model.
|
| 18 |
"""
|
| 19 |
-
device = 'cpu'
|
| 20 |
-
inputs = processor(image, return_tensors='pt').to(device)
|
| 21 |
-
image_embedding = model.get_image_embeddings(inputs['pixel_values'])
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
def get_polygon(points, image, image_embedding):
|
|
@@ -30,24 +33,12 @@ def get_polygon(points, image, image_embedding):
|
|
| 30 |
"""
|
| 31 |
points = list(chain.from_iterable(points))
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# pop the pixel_values as they are not neded
|
| 37 |
-
inputs.pop("pixel_values", None)
|
| 38 |
-
inputs.update({"image_embeddings": image_embedding})
|
| 39 |
-
|
| 40 |
-
with torch.no_grad():
|
| 41 |
-
outputs = model(**inputs)
|
| 42 |
-
|
| 43 |
-
masks = processor.image_processor.post_process_masks(
|
| 44 |
-
outputs.pred_masks.cpu(),
|
| 45 |
-
inputs["original_sizes"].cpu(),
|
| 46 |
-
inputs["reshaped_input_sizes"].cpu()
|
| 47 |
)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
img = mask.astype(np.uint8)[0]
|
| 51 |
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 52 |
|
| 53 |
if len(contours) == 0:
|
|
|
|
| 5 |
import traceback
|
| 6 |
import numpy as np
|
| 7 |
from itertools import chain
|
| 8 |
+
from segment_anything import SamPredictor, sam_model_registry
|
| 9 |
|
| 10 |
|
| 11 |
+
sam_checkpoint = "./checkpoints/sam_vit_h_4b8939.pth"
|
| 12 |
+
model_type = "vit_h"
|
| 13 |
|
| 14 |
|
| 15 |
def set_predictor(image):
|
| 16 |
"""
|
| 17 |
Creates a Sam predictor object based on a given image and model.
|
| 18 |
"""
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
| 21 |
+
sam.to(device=device)
|
| 22 |
+
|
| 23 |
+
predictor = SamPredictor(sam)
|
| 24 |
+
predictor.set_image(image)
|
| 25 |
+
|
| 26 |
+
return [image, predictor, 'Done']
|
| 27 |
|
| 28 |
|
| 29 |
def get_polygon(points, image, image_embedding):
|
|
|
|
| 33 |
"""
|
| 34 |
points = list(chain.from_iterable(points))
|
| 35 |
|
| 36 |
+
masks, _, _ = predictor.predict(
|
| 37 |
+
box=input_box[None, :],
|
| 38 |
+
multimask_output=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
+
img = masks[0].astype(np.uint8)
|
|
|
|
| 42 |
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 43 |
|
| 44 |
if len(contours) == 0:
|