Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| # Step 1: Read your background info | |
| with open("BACKGROUND_NEW.md", "r", encoding="utf-8") as f: | |
| background_text = f.read() | |
| # Step 2: Set up your InferenceClient (same as before) | |
| client = InferenceClient("bunnycore/QwQen-3B-LCoT") | |
| # HuggingFaceH4/zephyr-7b-beta | |
| # meta-llama/Llama-3.2-1B | |
| def respond( | |
| message, | |
| history: list[dict], | |
| system_message: str, | |
| max_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| ): | |
| if history is None: | |
| history = [] | |
| # Include background text as part of the system message for context | |
| combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}" | |
| # Start building the conversation history | |
| messages = [{"role": "system", "content": combined_system_message}] | |
| # Add conversation history | |
| for interaction in history: | |
| if "user" in interaction: | |
| messages.append({"role": "user", "content": interaction["user"]}) | |
| if "assistant" in interaction: | |
| messages.append({"role": "assistant", "content": interaction["assistant"]}) | |
| # Add the latest user message | |
| messages.append({"role": "user", "content": message}) | |
| # Generate response | |
| response = "" | |
| for msg in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = msg.choices[0].delta.content | |
| response += token | |
| yield response | |
| # print("----- SYSTEM MESSAGE -----") | |
| # print(messages[0]["content"]) | |
| # print("----- FULL MESSAGES LIST -----") | |
| # for m in messages: | |
| # print(m) | |
| # print("-------------------------") | |
| # Step 3: Build a Gradio Blocks interface with two Tabs | |
| with gr.Blocks() as demo: | |
| # Tab 1: GPT Chat Agent | |
| with gr.Tab("GPT Chat Agent"): | |
| gr.Markdown("## Welcome to Varun's GPT Agent") | |
| gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!") | |
| chat = gr.ChatInterface( | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| type="messages", # Specify message type | |
| ) | |
| # # Tab 2: Background Document | |
| # with gr.Tab("Varun's Background"): | |
| # gr.Markdown("# About Varun") | |
| # gr.Markdown(background_text) | |
| # Step 4: Launch | |
| if __name__ == "__main__": | |
| demo.launch() | |