Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Step 1: Read your background info | |
with open("BACKGROUND_NEW.md", "r", encoding="utf-8") as f: | |
background_text = f.read() | |
# Step 2: Set up your InferenceClient (same as before) | |
client = InferenceClient("bunnycore/QwQen-3B-LCoT") | |
# HuggingFaceH4/zephyr-7b-beta | |
# meta-llama/Llama-3.2-1B | |
def respond( | |
message, | |
history: list[dict], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
if history is None: | |
history = [] | |
# Include background text as part of the system message for context | |
combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}" | |
# Start building the conversation history | |
messages = [{"role": "system", "content": combined_system_message}] | |
# Add conversation history | |
for interaction in history: | |
if "user" in interaction: | |
messages.append({"role": "user", "content": interaction["user"]}) | |
if "assistant" in interaction: | |
messages.append({"role": "assistant", "content": interaction["assistant"]}) | |
# Add the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Generate response | |
response = "" | |
for msg in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = msg.choices[0].delta.content | |
response += token | |
yield response | |
# print("----- SYSTEM MESSAGE -----") | |
# print(messages[0]["content"]) | |
# print("----- FULL MESSAGES LIST -----") | |
# for m in messages: | |
# print(m) | |
# print("-------------------------") | |
# Step 3: Build a Gradio Blocks interface with two Tabs | |
with gr.Blocks() as demo: | |
# Tab 1: GPT Chat Agent | |
with gr.Tab("GPT Chat Agent"): | |
gr.Markdown("## Welcome to Varun's GPT Agent") | |
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!") | |
chat = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
type="messages", # Specify message type | |
) | |
# # Tab 2: Background Document | |
# with gr.Tab("Varun's Background"): | |
# gr.Markdown("# About Varun") | |
# gr.Markdown(background_text) | |
# Step 4: Launch | |
if __name__ == "__main__": | |
demo.launch() | |