VINAYAK MODI
commited on
Commit
•
e95cc19
1
Parent(s):
70c4086
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,23 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import torch
|
3 |
-
# from torchvision.transforms import transforms
|
4 |
-
# from PIL import Image
|
5 |
-
# from transformers import AutoModelForSequenceClassification
|
6 |
-
# # Load the model and tokenizer
|
7 |
-
# model_name = "vm24bho/net_dfm_myimg"
|
8 |
-
# model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
-
|
10 |
-
|
11 |
-
# # Define transformations for the input image
|
12 |
-
# transform = transforms.Compose([
|
13 |
-
# transforms.Resize((224, 224)),
|
14 |
-
# transforms.ToTensor(),
|
15 |
-
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
16 |
-
# ])
|
17 |
-
|
18 |
-
# def predict(image):
|
19 |
-
# # Preprocess the image
|
20 |
-
# image = transform(image).unsqueeze(0) # Add batch dimension
|
21 |
-
|
22 |
-
# # Perform inference
|
23 |
-
# outputs = model(image)
|
24 |
-
|
25 |
-
# # Get prediction
|
26 |
-
# prediction = torch.argmax(outputs.logits).item()
|
27 |
-
|
28 |
-
# return prediction
|
29 |
-
|
30 |
-
# def main():
|
31 |
-
# st.title("Image Detection: Real or Deepfake")
|
32 |
-
# uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
33 |
-
|
34 |
-
# if uploaded_image is not None:
|
35 |
-
# image = Image.open(uploaded_image)
|
36 |
-
# st.image(image, caption='Uploaded Image', use_column_width=True)
|
37 |
-
|
38 |
-
# # Make prediction
|
39 |
-
# if st.button("Detect"):
|
40 |
-
# prediction = predict(image)
|
41 |
-
# if prediction == 0:
|
42 |
-
# st.write("Prediction: Real")
|
43 |
-
# else:
|
44 |
-
# st.write("Prediction: Deepfake")
|
45 |
-
|
46 |
-
# if __name__ == "__main__":
|
47 |
-
# main()
|
48 |
-
|
49 |
-
|
50 |
import streamlit as st
|
51 |
-
from transformers import ViTForImageClassification, ViTFeatureExtractor
|
52 |
from PIL import Image
|
53 |
-
import
|
|
|
54 |
|
55 |
-
# Load the
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
st.title("Deepfake
|
60 |
|
61 |
-
# File uploader
|
62 |
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
63 |
-
|
64 |
if uploaded_file is not None:
|
65 |
-
# Load the image
|
66 |
image = Image.open(uploaded_file)
|
67 |
-
|
68 |
-
# Display the image
|
69 |
-
st.image(image, caption='Uploaded Image', use_column_width=True)
|
70 |
st.write("")
|
71 |
st.write("Classifying...")
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
# Perform inference
|
77 |
-
with torch.no_grad():
|
78 |
-
outputs = model(**inputs)
|
79 |
-
|
80 |
-
# Get the predicted label
|
81 |
-
logits = outputs.logits
|
82 |
-
predicted_class_idx = logits.argmax(-1).item()
|
83 |
-
predicted_class_label = model.config.id2label[predicted_class_idx]
|
84 |
|
85 |
# Display the result
|
86 |
-
st.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
+
import requests
|
4 |
+
from transformers import pipeline
|
5 |
|
6 |
+
# Load the pipeline
|
7 |
+
model_name = "vm24bho/net_dfm_myimg"
|
8 |
+
pipe = pipeline('image-classification', model=model_name)
|
9 |
|
10 |
+
st.title("Deepfake vs Real Image Detection")
|
11 |
|
|
|
12 |
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
|
|
13 |
if uploaded_file is not None:
|
|
|
14 |
image = Image.open(uploaded_file)
|
15 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
|
|
|
|
16 |
st.write("")
|
17 |
st.write("Classifying...")
|
18 |
|
19 |
+
# Apply the model
|
20 |
+
result = pipe(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Display the result
|
23 |
+
st.write(result)
|