Commit
·
5eec800
1
Parent(s):
b586598
fixing dcm2nii and wget etc
Browse files- Dockerfile +7 -10
- app.py +17 -22
- requirements.txt +1 -1
Dockerfile
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
# Use an official Python runtime as a parent image
|
| 2 |
FROM python:3.10.12
|
| 3 |
|
| 4 |
-
# RUN apt-get update && apt-get install -y unzip wget
|
| 5 |
-
|
| 6 |
# Set up a new user named "user" with user ID 1000
|
| 7 |
RUN useradd -m -u 1000 user
|
| 8 |
|
|
@@ -29,17 +27,16 @@ COPY --chown=user . $HOME/app
|
|
| 29 |
# RUN wget https://github.com/rordenlab/dcm2niix/releases/latest/download/dcm2niix_lnx.zip && \
|
| 30 |
# unzip dcm2niix_lnx.zip && \
|
| 31 |
# cp dcm2niix /home/user/.local/bin
|
| 32 |
-
|
| 33 |
-
# RUN dcm2niix -h
|
| 34 |
|
| 35 |
# Install any needed packages specified in requirements.txt
|
| 36 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 37 |
|
| 38 |
-
#
|
| 39 |
-
# RUN
|
| 40 |
-
# RUN
|
| 41 |
-
# RUN
|
| 42 |
-
# RUN
|
| 43 |
|
| 44 |
# RUN unzip "metadata_only_model.zip" -d "metadata_only_model/"
|
| 45 |
# RUN unzip "images_only_model.zip" -d "images_only_model/"
|
|
@@ -58,4 +55,4 @@ maxMessageSize = 2000\n\
|
|
| 58 |
EXPOSE 8501
|
| 59 |
|
| 60 |
# Run filter_data_app.py when the container launches
|
| 61 |
-
CMD streamlit run app.py
|
|
|
|
| 1 |
# Use an official Python runtime as a parent image
|
| 2 |
FROM python:3.10.12
|
| 3 |
|
|
|
|
|
|
|
| 4 |
# Set up a new user named "user" with user ID 1000
|
| 5 |
RUN useradd -m -u 1000 user
|
| 6 |
|
|
|
|
| 27 |
# RUN wget https://github.com/rordenlab/dcm2niix/releases/latest/download/dcm2niix_lnx.zip && \
|
| 28 |
# unzip dcm2niix_lnx.zip && \
|
| 29 |
# cp dcm2niix /home/user/.local/bin
|
| 30 |
+
|
|
|
|
| 31 |
|
| 32 |
# Install any needed packages specified in requirements.txt
|
| 33 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 34 |
|
| 35 |
+
# Download files as the non-root user
|
| 36 |
+
# RUN curl https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/scaling_factors.csv
|
| 37 |
+
# RUN curl https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/metadata_only_model.zip
|
| 38 |
+
# RUN curl https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_only_model.zip
|
| 39 |
+
# RUN curl https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_and_metadata_model.zip
|
| 40 |
|
| 41 |
# RUN unzip "metadata_only_model.zip" -d "metadata_only_model/"
|
| 42 |
# RUN unzip "images_only_model.zip" -d "images_only_model/"
|
|
|
|
| 55 |
EXPOSE 8501
|
| 56 |
|
| 57 |
# Run filter_data_app.py when the container launches
|
| 58 |
+
CMD streamlit run app.py
|
app.py
CHANGED
|
@@ -56,33 +56,30 @@ print('selected_series: ' + str(selected_series))
|
|
| 56 |
if st.button("Run inference"):
|
| 57 |
|
| 58 |
# Code to run when the button is pressed
|
| 59 |
-
st.write("Running inference")
|
| 60 |
-
|
| 61 |
-
if os.path.exists("DICOMScanClassification_user_demo.ipynb"):
|
| 62 |
-
os.remove("DICOMScanClassification_user_demo.ipynb")
|
| 63 |
|
| 64 |
if not os.path.exists("DICOMScanClassification_user_demo.ipynb"):
|
| 65 |
subprocess.run(["wget", "https://raw.githubusercontent.com/deepakri201/DICOMScanClassification_pw41/main/DICOMScanClassification_user_demo.ipynb"])
|
|
|
|
| 66 |
if not os.path.exists("scaling_factors.csv"):
|
| 67 |
-
subprocess.run(["wget", "
|
|
|
|
| 68 |
if not os.path.exists("metadata_only_model.zip"):
|
| 69 |
-
subprocess.run(["wget", "
|
| 70 |
-
subprocess.run(["unzip", "metadata_only_model.zip"
|
| 71 |
-
|
| 72 |
-
subprocess.run(["wget", "-O", "images_only_model.zip", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_only_model.zip"])
|
| 73 |
-
subprocess.run(["unzip", "images_only_model.zip", -d, "images_only_model/"])
|
| 74 |
if not os.path.exists("images_and_metadata_model.zip"):
|
| 75 |
-
subprocess.run(["wget", "
|
| 76 |
-
subprocess.run(["unzip", "images_and_metadata_model.zip"
|
| 77 |
-
|
| 78 |
-
# pm.execute_notebook(
|
| 79 |
-
# "DICOMScanClassification_user_demo.ipynb",
|
| 80 |
-
# 'output.ipynb',
|
| 81 |
-
# parameters = dict(SeriesInstanceUID=selected_series)
|
| 82 |
-
# )
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
subprocess.run(["papermill", "-p", "SeriesInstanceUID", selected_series, "DICOMScanClassification_user_demo.ipynb", "output.ipynb"])
|
| 85 |
|
|
|
|
|
|
|
| 86 |
with open('output.ipynb', "rb") as f:
|
| 87 |
st.download_button(
|
| 88 |
label="Download the output notebook file",
|
|
@@ -90,9 +87,7 @@ if st.button("Run inference"):
|
|
| 90 |
file_name="output.ipynb",
|
| 91 |
mime="application/json"
|
| 92 |
)
|
| 93 |
-
|
| 94 |
-
# Show 2D image
|
| 95 |
|
| 96 |
-
#
|
| 97 |
|
| 98 |
-
|
|
|
|
| 56 |
if st.button("Run inference"):
|
| 57 |
|
| 58 |
# Code to run when the button is pressed
|
| 59 |
+
st.write("Button pressed! Running inference")
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
if not os.path.exists("DICOMScanClassification_user_demo.ipynb"):
|
| 62 |
subprocess.run(["wget", "https://raw.githubusercontent.com/deepakri201/DICOMScanClassification_pw41/main/DICOMScanClassification_user_demo.ipynb"])
|
| 63 |
+
|
| 64 |
if not os.path.exists("scaling_factors.csv"):
|
| 65 |
+
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/scaling_factors.csv"])
|
| 66 |
+
|
| 67 |
if not os.path.exists("metadata_only_model.zip"):
|
| 68 |
+
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/metadata_only_model.zip"])
|
| 69 |
+
subprocess.run(["unzip", "metadata_only_model.zip"])
|
| 70 |
+
|
|
|
|
|
|
|
| 71 |
if not os.path.exists("images_and_metadata_model.zip"):
|
| 72 |
+
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_and_metadata_model.zip"])
|
| 73 |
+
subprocess.run(["unzip", "images_and_metadata_model.zip"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
if not os.path.exists("images_only_model.zip"):
|
| 76 |
+
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_only_model.zip"])
|
| 77 |
+
subprocess.run(["unzip", "images_only_model.zip"])
|
| 78 |
+
|
| 79 |
subprocess.run(["papermill", "-p", "SeriesInstanceUID", selected_series, "DICOMScanClassification_user_demo.ipynb", "output.ipynb"])
|
| 80 |
|
| 81 |
+
st.write(subprocess.run(["ls","-R"]))
|
| 82 |
+
|
| 83 |
with open('output.ipynb', "rb") as f:
|
| 84 |
st.download_button(
|
| 85 |
label="Download the output notebook file",
|
|
|
|
| 87 |
file_name="output.ipynb",
|
| 88 |
mime="application/json"
|
| 89 |
)
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
# show classification results df
|
| 92 |
|
| 93 |
+
# show image
|
requirements.txt
CHANGED
|
@@ -14,4 +14,4 @@ matplotlib==3.7.1
|
|
| 14 |
scikit-learn==1.2.2
|
| 15 |
sklearn-pandas
|
| 16 |
numpy==1.25.2
|
| 17 |
-
dcm2niix
|
|
|
|
| 14 |
scikit-learn==1.2.2
|
| 15 |
sklearn-pandas
|
| 16 |
numpy==1.25.2
|
| 17 |
+
git+https://github.com/rordenlab/dcm2niix.git
|