Spaces:
Running
Running
import gradio as gr | |
import torch | |
from PIL import Image | |
import scipy.io.wavfile as wavfile | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") | |
def generate_audio(text): | |
# Generate the narrated text | |
narrated_text = narrator(text) | |
# Save the audio to a WAV file | |
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], | |
data=narrated_text["audio"][0]) | |
# Return the path to the saved audio file | |
return "output.wav" | |
def caption_the_image(image): | |
semantics = caption_image(images=image) | |
return generate_audio(semantics[0]['generated_text']) | |
gr.close_all() | |
demo = gr.Interface(fn=caption_the_image, | |
inputs=[gr.Image(label="Select Image",type="pil")], | |
outputs=[gr.Audio(label="Generated Audio")], | |
title="@GenAILearniverse Project 8: Image Captioning with Audio", | |
description="This application uses 'Salesforce/blip-image-captioning-large' and 'kakao-enterprise/vits-ljs' to create text from image and narrate the captioning") | |
demo.launch() |