vjosap commited on
Commit
c045836
·
verified ·
1 Parent(s): fabd059

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
3
  from transformers import pipeline
4
  import torch
5
  from transformers import AutoModel, AutoTokenizer
6
- from torch.nn import Softmax
7
  import torch
8
  import torch.nn as nn
9
  from huggingface_hub import PyTorchModelHubMixin
@@ -16,7 +16,7 @@ class MyModel(
16
  nn.Module,
17
  PyTorchModelHubMixin,
18
  # optionally, you can add metadata which gets pushed to the model card
19
- repo_url="your-repo-url",
20
  pipeline_tag="text-classification",
21
  license="mit",
22
  ):
@@ -66,9 +66,6 @@ def preprocessing(input_text, tokenizer):
66
  def convert_excel_to_csv(file):
67
  return pd.read_excel(file)
68
 
69
- # initialising the Softmax function
70
- soft = Softmax()
71
-
72
  # Function to load models from Hugging Face Hub
73
  @st.cache_resource
74
  def get_model_score(sentence, mft):
@@ -83,7 +80,7 @@ def get_model_score(sentence, mft):
83
 
84
  # predicting the mft score
85
  output = model(**encodeds)
86
- score = soft(output)
87
 
88
  # extracting and return the second value from the tensor
89
  #mft_value = score[0, 1].item()
 
3
  from transformers import pipeline
4
  import torch
5
  from transformers import AutoModel, AutoTokenizer
6
+ import torch.nn.functional as F
7
  import torch
8
  import torch.nn as nn
9
  from huggingface_hub import PyTorchModelHubMixin
 
16
  nn.Module,
17
  PyTorchModelHubMixin,
18
  # optionally, you can add metadata which gets pushed to the model card
19
+ # repo_url="your-repo-url",
20
  pipeline_tag="text-classification",
21
  license="mit",
22
  ):
 
66
  def convert_excel_to_csv(file):
67
  return pd.read_excel(file)
68
 
 
 
 
69
  # Function to load models from Hugging Face Hub
70
  @st.cache_resource
71
  def get_model_score(sentence, mft):
 
80
 
81
  # predicting the mft score
82
  output = model(**encodeds)
83
+ score = F.softmax(output, dim=1)
84
 
85
  # extracting and return the second value from the tensor
86
  #mft_value = score[0, 1].item()