Spaces:
Running
Running
"""Magnitude charts.""" | |
import vizro.models as vm | |
from pages._pages_utils import PAGE_GRID, make_code_clipboard_from_py_file | |
from pages.examples import bar, magnitude_column, paired_bar, paired_column, parallel_coordinates, radar | |
bar_page = vm.Page( | |
title="Bar", | |
path="magnitude/bar", | |
layout=vm.Layout(grid=PAGE_GRID), | |
components=[ | |
vm.Card( | |
text=""" | |
#### What is a bar chart? | |
A bar chart displays bars with lengths proportional to the values they represent. One axis shows the | |
categories to compare, and the other provides a value scale starting from zero. | |
| |
#### When should I use it? | |
Use a bar chart to help your audience compare sizes and identify patterns in categorical data, such as | |
**how many?** in each category. Arrange the bars in any order to fit the message you want to emphasize. | |
Ensure clear labeling, especially with many bars, and consider using a legend or abbreviations with fuller | |
descriptions below. | |
""" | |
), | |
vm.Graph(figure=bar.fig), | |
vm.Tabs( | |
tabs=[ | |
vm.Container( | |
title="Vizro dashboard", components=[make_code_clipboard_from_py_file("bar.py", mode="vizro")] | |
), | |
vm.Container( | |
title="Plotly figure", | |
components=[make_code_clipboard_from_py_file("bar.py", mode="plotly")], | |
), | |
] | |
), | |
], | |
) | |
# Note: Code example for magnitude/column differs from time/column. The text description is the same. | |
column_page = vm.Page( | |
id="magnitude-column", | |
path="magnitude/column", | |
title="Column", | |
layout=vm.Layout(grid=PAGE_GRID), | |
components=[ | |
vm.Card( | |
text=""" | |
#### What is a column chart? | |
A column chart is a type of bar chart where data is represented with vertical columns. Each | |
column's height corresponds to the value it represents, with the y-axis starting from zero. | |
| |
#### When should I use it? | |
Use a column chart to compare sizes and identify patterns in categorical data, including time-based | |
data. Arrange columns to fit your message, and for time-based data, order them chronologically to | |
highlight trends. Ensure clear labeling, especially with many categories, and consider using a legend | |
or abbreviations with fuller descriptions below. | |
""" | |
), | |
vm.Graph(figure=magnitude_column.fig), | |
vm.Tabs( | |
tabs=[ | |
vm.Container( | |
title="Vizro dashboard", | |
components=[make_code_clipboard_from_py_file("magnitude_column.py", mode="vizro")], | |
), | |
vm.Container( | |
title="Plotly figure", | |
components=[make_code_clipboard_from_py_file("magnitude_column.py", mode="plotly")], | |
), | |
] | |
), | |
], | |
) | |
paired_bar_page = vm.Page( | |
title="Paired bar", | |
path="magnitude/paired-bar", | |
layout=vm.Layout(grid=PAGE_GRID), | |
components=[ | |
vm.Card( | |
text=""" | |
#### What is a paired bar chart? | |
A paired bar chart, also known as a grouped bar chart, displays bars grouped together in pairs for each | |
category, with the lengths of the bars proportional to the values they represent. One axis shows the | |
categories to compare, while the other provides a value scale starting from zero. | |
| |
#### When should I use it? | |
Use a paired bar chart to compare multiple sets of data within the same categories. This type of chart is | |
particularly useful for highlighting differences and similarities between groups, such as **how many?** in | |
each category across different groups. Arrange the paired bars clearly to fit the message you want to | |
emphasize. Ensure clear labeling, especially with many bars, and consider using a legend or abbreviations | |
with fuller descriptions below. | |
""" | |
), | |
vm.Graph(figure=paired_bar.fig), | |
vm.Tabs( | |
tabs=[ | |
vm.Container( | |
title="Vizro dashboard", | |
components=[make_code_clipboard_from_py_file("paired_bar.py", mode="vizro")], | |
), | |
vm.Container( | |
title="Plotly figure", | |
components=[make_code_clipboard_from_py_file("paired_bar.py", mode="plotly")], | |
), | |
] | |
), | |
], | |
) | |
paired_column_page = vm.Page( | |
title="Paired column", | |
path="magnitude/paired-column", | |
layout=vm.Layout(grid=PAGE_GRID), | |
components=[ | |
vm.Card( | |
text=""" | |
#### What is a paired column chart? | |
A paired column chart, also known as a grouped column chart, displays columns grouped together in pairs for | |
each category, with the heights of the columns proportional to the values they represent. One axis shows the | |
categories to compare, while the other provides a value scale starting from zero. | |
| |
#### When should I use it? | |
Use a paired column chart to compare multiple sets of data within the same categories. This type of chart is | |
particularly useful for highlighting differences and similarities between groups, such as **how many?** in | |
each category across different groups. Arrange the paired columns clearly to fit the message you want to | |
emphasize. Ensure clear labeling, especially with many columns, and consider using a legend or abbreviations | |
with fuller descriptions below. | |
""" | |
), | |
vm.Graph(figure=paired_column.fig), | |
vm.Tabs( | |
tabs=[ | |
vm.Container( | |
title="Vizro dashboard", | |
components=[make_code_clipboard_from_py_file("paired_column.py", mode="vizro")], | |
), | |
vm.Container( | |
title="Plotly figure", | |
components=[make_code_clipboard_from_py_file("paired_column.py", mode="plotly")], | |
), | |
] | |
), | |
], | |
) | |
parallel_coordinates_page = vm.Page( | |
path="magnitude/parallel-coordinates ", | |
title="Parallel coordinates", | |
layout=vm.Layout(grid=PAGE_GRID), | |
components=[ | |
vm.Card( | |
text=""" | |
#### What is a parallel coordinates chart? | |
A parallel coordinates chart is a type of data visualization used to plot multivariate numerical data. | |
Each axis represents a different variable, and lines connecting the axes indicate the values of | |
individual data points across these variables. | |
| |
#### When should I use it? | |
Use a parallel coordinates chart to explore relationships and patterns in high-dimensional data. | |
This chart is particularly useful for comparing multiple variables simultaneously and identifying | |
correlations or clusters within the data. Ensure clear labeling of each axis and consider using color | |
coding to distinguish between different data points or groups. | |
""" | |
), | |
vm.Graph(figure=parallel_coordinates.fig), | |
vm.Tabs( | |
tabs=[ | |
vm.Container( | |
title="Vizro dashboard", | |
components=[make_code_clipboard_from_py_file("parallel_coordinates.py", mode="vizro")], | |
), | |
vm.Container( | |
title="Plotly figure", | |
components=[make_code_clipboard_from_py_file("parallel_coordinates.py", mode="plotly")], | |
), | |
] | |
), | |
], | |
) | |
radar_page = vm.Page( | |
path="magnitude/radar", | |
title="Radar", | |
layout=vm.Layout(grid=PAGE_GRID), | |
components=[ | |
vm.Card( | |
text=""" | |
#### What is a radar chart? | |
A radar chart, also known as a spider plot or star plot, is a type of data visualization | |
used to display multivariate data. It consists of three or more variables represented | |
on axes that originate from the same central point. | |
#### When should I use it? | |
Use a radar chart to compare performance or characteristics across multiple variables. | |
The chart effectively highlights strengths, weaknesses, patterns, and outliers. | |
To maintain clarity, use consistent scales for all axes and clearly mark labels and data points. | |
""" | |
), | |
vm.Graph(figure=radar.fig), | |
vm.Tabs( | |
tabs=[ | |
vm.Container( | |
title="Vizro dashboard", components=[make_code_clipboard_from_py_file("radar.py", mode="vizro")] | |
), | |
vm.Container( | |
title="Plotly figure", | |
components=[make_code_clipboard_from_py_file("radar.py", mode="plotly")], | |
), | |
] | |
), | |
], | |
) | |
pages = [bar_page, column_page, paired_bar_page, paired_column_page, parallel_coordinates_page, radar_page] | |