Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Disable oneDNN custom operations
|
8 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
9 |
+
|
10 |
+
# Clear PyTorch cache
|
11 |
+
torch.cuda.empty_cache()
|
12 |
+
|
13 |
+
# Check if CUDA is available
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
if device == "cuda":
|
16 |
+
print("CUDA is available. Device count:", torch.cuda.device_count())
|
17 |
+
print("Current device:", torch.cuda.current_device())
|
18 |
+
print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
|
19 |
+
else:
|
20 |
+
print("CUDA is not available. Using CPU.")
|
21 |
+
|
22 |
+
# Load ControlNet model with OpenPose pre-trained weights from Hugging Face
|
23 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
|
24 |
+
|
25 |
+
# Load the Stable Diffusion model
|
26 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
27 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
28 |
+
).to(device)
|
29 |
+
|
30 |
+
# Function for inference
|
31 |
+
def generate_image(prompt, target_image, pose_image):
|
32 |
+
try:
|
33 |
+
# Resize images
|
34 |
+
target_image = target_image.resize((512, 512))
|
35 |
+
pose_image = pose_image.resize((512, 512))
|
36 |
+
|
37 |
+
# Generate image with ControlNet
|
38 |
+
output = pipe(prompt=prompt, image=target_image, control_image=pose_image, num_inference_steps=50)
|
39 |
+
|
40 |
+
# Return the result
|
41 |
+
return output["sample"][0]
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error during image generation: {e}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
# Setup Gradio Interface
|
47 |
+
interface = gr.Interface(
|
48 |
+
fn=generate_image,
|
49 |
+
inputs=[
|
50 |
+
gr.Textbox(label="Prompt"),
|
51 |
+
gr.Image(label="Target Image", type="pil"),
|
52 |
+
gr.Image(label="Pose Image (Reference)", type="pil")
|
53 |
+
],
|
54 |
+
outputs=gr.Image(label="Generated Image")
|
55 |
+
)
|
56 |
+
|
57 |
+
# Launch the interface
|
58 |
+
interface.launch()
|