Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import tensorflow as tf | |
from tensorflow import keras | |
from PIL import Image, ImageOps | |
net = cv2.dnn.readNetFromCaffe('colorization_deploy_v2.prototxt','colorization_release_v2.caffemodel') | |
pts = np.load('pts_in_hull.npy') | |
class8 = net.getLayerId("class8_ab") | |
conv8 = net.getLayerId("conv8_313_rh") | |
pts = pts.transpose().reshape(2,313,1,1) | |
net.getLayer(class8).blobs = [pts.astype("float32")] | |
net.getLayer(conv8).blobs = [np.full([1,313],2.606,dtype='float32')] | |
def infer(original_image): | |
#image = cv2.imread('bw.jpg') | |
image = keras.preprocessing.image.img_to_array(original_image) | |
scaled = image.astype("float32")/255.0 | |
lab = cv2.cvtColor(scaled,cv2.COLOR_BGR2LAB) | |
#cv2.imshow("image",lab) | |
resized = cv2.resize(lab,(224,224)) | |
L = cv2.split(resized)[0] | |
L -= 50 | |
net.setInput(cv2.dnn.blobFromImage(L)) | |
ab = net.forward()[0, :, :, :].transpose((1,2,0)) | |
ab = cv2.resize(ab, (image.shape[1],image.shape[0])) | |
L = cv2.split(lab)[0] | |
colorized = np.concatenate((L[:,:,np.newaxis], ab), axis=2) | |
colorized = cv2.cvtColor(colorized,cv2.COLOR_LAB2BGR) | |
colorized = np.clip(colorized,0,1) | |
colorized = (255 * colorized).astype("uint8") | |
#cv2_imshow(image) | |
#cv2_imshow(colorized) | |
color_coverted = cv2.cvtColor(colorized, cv2.COLOR_BGR2RGB) | |
colorized = Image.fromarray(color_coverted) | |
return colorized | |
cv2.waitKey(0) | |
import gradio as gr | |
examples=['bw.jpg','blw.jpg','boy.jpg'] | |
iface = gr.Interface( | |
fn=infer, | |
title="Colourization", | |
description = "OpenCV implementation of Colorful Image Colorization paper presented in ECCV, 2016. ππ", | |
inputs=[gr.inputs.Image(label="image", type="pil")], | |
outputs="image", | |
examples=examples, | |
cache_examples=True, | |
article = "Authors: <a href=\"https://github.com/Uviveknarayan\">Vivek Narayan</a>, <a href=\"https://github.com/chiranjan-7\">Chiranjan</a>,<a href=\"https://github.com/GangaSrujan\">Srujan</a>,<a href=\"https://github.com/RohanPawar3399\">Rohan Pawar</a>,<a href=\"https://github.com/pavankarthik77\">Pavan Karthik</a>").launch(enable_queue=True) |