vittore commited on
Commit
7b64ad2
1 Parent(s): 9952335

Add a beautiful description

Browse files
Files changed (2) hide show
  1. app.py +52 -58
  2. safety_checker.py +137 -0
app.py CHANGED
@@ -4,6 +4,7 @@ import gradio as gr
4
  from gradio import processing_utils, utils
5
  from PIL import Image
6
  import random
 
7
  from diffusers import (
8
  DiffusionPipeline,
9
  AutoencoderKL,
@@ -12,39 +13,60 @@ from diffusers import (
12
  StableDiffusionLatentUpscalePipeline,
13
  StableDiffusionImg2ImgPipeline,
14
  StableDiffusionControlNetImg2ImgPipeline,
15
- DPMSolverMultistepScheduler, # <-- Added import
16
- EulerDiscreteScheduler # <-- Added import
17
  )
18
  import tempfile
19
  import time
20
  from share_btn import community_icon_html, loading_icon_html, share_js
21
  import user_history
22
  from illusion_style import css
23
-
 
 
24
 
25
  BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
26
 
27
-
28
- device='cpu'
29
-
30
  # Initialize both pipelines
31
  vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
32
- #init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
33
- controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)#, torch_dtype=torch.float16)
 
 
 
 
 
 
 
 
34
  main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
35
  BASE_MODEL,
36
  controlnet=controlnet,
37
  vae=vae,
38
- safety_checker=None,
 
39
  torch_dtype=torch.float16,
40
- ).to(device)
41
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
43
  #main_pipe.unet.to(memory_format=torch.channels_last)
44
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
45
  #model_id = "stabilityai/sd-x2-latent-upscaler"
46
  image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
47
 
 
48
  #image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
49
  #upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
50
  #upscaler.to("cuda")
@@ -104,12 +126,13 @@ def check_inputs(prompt: str, control_image: Image.Image):
104
  raise gr.Error("Prompt is required")
105
 
106
  def convert_to_pil(base64_image):
107
- pil_image = processing_utils.decode_base64_to_image(base64_image)
108
  return pil_image
109
 
110
  def convert_to_base64(pil_image):
111
- base64_image = processing_utils.encode_pil_to_base64(pil_image)
112
- return base64_image
 
113
 
114
  # Inference function
115
  @spaces.GPU
@@ -141,7 +164,7 @@ def inference(
141
 
142
  main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
143
  my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
144
- generator = torch.Generator(device=device).manual_seed(my_seed)
145
 
146
  out = main_pipe(
147
  prompt=prompt,
@@ -197,15 +220,17 @@ def inference(
197
  with gr.Blocks() as app:
198
  gr.Markdown(
199
  '''
200
- <center><h1>Illusion Diffusion HQ 🌀</h1></span>
201
- <span font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</span>
202
- </center>
203
-
204
- A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG) with big contributions from [multimodalart](https://twitter.com/multimodalart)
205
- This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
206
- Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)
207
  '''
208
  )
 
 
209
  state_img_input = gr.State()
210
  state_img_output = gr.State()
211
  with gr.Row():
@@ -235,53 +260,22 @@ with gr.Blocks() as app:
235
  check_inputs,
236
  inputs=[prompt, control_image],
237
  queue=False
238
- ).success(
239
- convert_to_pil,
240
- inputs=[control_image],
241
- outputs=[state_img_input],
242
- queue=False,
243
- preprocess=False,
244
  ).success(
245
  inference,
246
- inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
247
- outputs=[state_img_output, result_image, share_group, used_seed]
248
- ).success(
249
- convert_to_base64,
250
- inputs=[state_img_output],
251
- outputs=[result_image],
252
- queue=False,
253
- postprocess=False
254
- )
255
  run_btn.click(
256
  check_inputs,
257
  inputs=[prompt, control_image],
258
  queue=False
259
- ).success(
260
- convert_to_pil,
261
- inputs=[control_image],
262
- outputs=[state_img_input],
263
- queue=False,
264
- preprocess=False,
265
  ).success(
266
  inference,
267
- inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
268
- outputs=[state_img_output, result_image, share_group, used_seed]
269
- ).success(
270
- convert_to_base64,
271
- inputs=[state_img_output],
272
- outputs=[result_image],
273
- queue=False,
274
- postprocess=False
275
- )
276
  share_button.click(None, [], [], js=share_js)
277
 
278
- def greet(name):
279
- return "Hello " + name + "!!"
280
-
281
- #demo = gr.Interface(fn=greet, inputs="text", outputs="text")
282
- #demo.launch()
283
-
284
-
285
  with gr.Blocks(css=css) as app_with_history:
286
  with gr.Tab("Demo"):
287
  app.render()
 
4
  from gradio import processing_utils, utils
5
  from PIL import Image
6
  import random
7
+
8
  from diffusers import (
9
  DiffusionPipeline,
10
  AutoencoderKL,
 
13
  StableDiffusionLatentUpscalePipeline,
14
  StableDiffusionImg2ImgPipeline,
15
  StableDiffusionControlNetImg2ImgPipeline,
16
+ DPMSolverMultistepScheduler,
17
+ EulerDiscreteScheduler
18
  )
19
  import tempfile
20
  import time
21
  from share_btn import community_icon_html, loading_icon_html, share_js
22
  import user_history
23
  from illusion_style import css
24
+ import os
25
+ from transformers import CLIPImageProcessor
26
+ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
27
 
28
  BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
29
 
 
 
 
30
  # Initialize both pipelines
31
  vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
32
+ controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
33
+
34
+ # Initialize the safety checker conditionally
35
+ SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1"
36
+ safety_checker = None
37
+ feature_extractor = None
38
+ if SAFETY_CHECKER_ENABLED:
39
+ safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
40
+ feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
41
+
42
  main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
43
  BASE_MODEL,
44
  controlnet=controlnet,
45
  vae=vae,
46
+ safety_checker=safety_checker,
47
+ feature_extractor=feature_extractor,
48
  torch_dtype=torch.float16,
49
+ ).to("cuda")
50
 
51
+ # Function to check NSFW images
52
+ #def check_nsfw_images(images: list[Image.Image]) -> tuple[list[Image.Image], list[bool]]:
53
+ # if SAFETY_CHECKER_ENABLED:
54
+ # safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
55
+ # has_nsfw_concepts = safety_checker(
56
+ # images=[images],
57
+ # clip_input=safety_checker_input.pixel_values.to("cuda")
58
+ # )
59
+ # return images, has_nsfw_concepts
60
+ # else:
61
+ # return images, [False] * len(images)
62
+
63
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
64
  #main_pipe.unet.to(memory_format=torch.channels_last)
65
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
66
  #model_id = "stabilityai/sd-x2-latent-upscaler"
67
  image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
68
 
69
+
70
  #image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
71
  #upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
72
  #upscaler.to("cuda")
 
126
  raise gr.Error("Prompt is required")
127
 
128
  def convert_to_pil(base64_image):
129
+ pil_image = Image.open(base64_image)
130
  return pil_image
131
 
132
  def convert_to_base64(pil_image):
133
+ with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
134
+ image.save(temp_file.name)
135
+ return temp_file.name
136
 
137
  # Inference function
138
  @spaces.GPU
 
164
 
165
  main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
166
  my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
167
+ generator = torch.Generator(device="cuda").manual_seed(my_seed)
168
 
169
  out = main_pipe(
170
  prompt=prompt,
 
220
  with gr.Blocks() as app:
221
  gr.Markdown(
222
  '''
223
+ <div style="text-align: center;">
224
+ <h1>Illusion Diffusion HQ 🌀</h1>
225
+ <p style="font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</p>
226
+ <p>Illusion Diffusion is back up with a safety checker! Because I have been asked, if you would like to support me, consider using <a href="https://deforum.studio">deforum.studio</a></p>
227
+ <p>A space by AP <a href="https://twitter.com/angrypenguinPNG">Follow me on Twitter</a> with big contributions from <a href="https://twitter.com/multimodalart">multimodalart</a></p>
228
+ <p>This project works by using <a href="https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster">Monster Labs QR Control Net</a>. Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: <a href="https://twitter.com/MrUgleh">MrUgleh</a> for discovering the workflow :)</p>
229
+ </div>
230
  '''
231
  )
232
+
233
+
234
  state_img_input = gr.State()
235
  state_img_output = gr.State()
236
  with gr.Row():
 
260
  check_inputs,
261
  inputs=[prompt, control_image],
262
  queue=False
 
 
 
 
 
 
263
  ).success(
264
  inference,
265
+ inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
266
+ outputs=[result_image, result_image, share_group, used_seed])
267
+
 
 
 
 
 
 
268
  run_btn.click(
269
  check_inputs,
270
  inputs=[prompt, control_image],
271
  queue=False
 
 
 
 
 
 
272
  ).success(
273
  inference,
274
+ inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
275
+ outputs=[result_image, result_image, share_group, used_seed])
276
+
 
 
 
 
 
 
277
  share_button.click(None, [], [], js=share_js)
278
 
 
 
 
 
 
 
 
279
  with gr.Blocks(css=css) as app_with_history:
280
  with gr.Tab("Demo"):
281
  app.render()
safety_checker.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import numpy as np
16
+ import torch
17
+ import torch.nn as nn
18
+ from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
19
+
20
+
21
+ def cosine_distance(image_embeds, text_embeds):
22
+ normalized_image_embeds = nn.functional.normalize(image_embeds)
23
+ normalized_text_embeds = nn.functional.normalize(text_embeds)
24
+ return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
25
+
26
+
27
+ class StableDiffusionSafetyChecker(PreTrainedModel):
28
+ config_class = CLIPConfig
29
+
30
+ _no_split_modules = ["CLIPEncoderLayer"]
31
+
32
+ def __init__(self, config: CLIPConfig):
33
+ super().__init__(config)
34
+
35
+ self.vision_model = CLIPVisionModel(config.vision_config)
36
+ self.visual_projection = nn.Linear(
37
+ config.vision_config.hidden_size, config.projection_dim, bias=False
38
+ )
39
+
40
+ self.concept_embeds = nn.Parameter(
41
+ torch.ones(17, config.projection_dim), requires_grad=False
42
+ )
43
+ self.special_care_embeds = nn.Parameter(
44
+ torch.ones(3, config.projection_dim), requires_grad=False
45
+ )
46
+
47
+ self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
48
+ self.special_care_embeds_weights = nn.Parameter(
49
+ torch.ones(3), requires_grad=False
50
+ )
51
+
52
+ @torch.no_grad()
53
+ def forward(self, clip_input, images):
54
+ pooled_output = self.vision_model(clip_input)[1] # pooled_output
55
+ image_embeds = self.visual_projection(pooled_output)
56
+
57
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
58
+ special_cos_dist = (
59
+ cosine_distance(image_embeds, self.special_care_embeds)
60
+ .cpu()
61
+ .float()
62
+ .numpy()
63
+ )
64
+ cos_dist = (
65
+ cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
66
+ )
67
+
68
+ result = []
69
+ batch_size = image_embeds.shape[0]
70
+ for i in range(batch_size):
71
+ result_img = {
72
+ "special_scores": {},
73
+ "special_care": [],
74
+ "concept_scores": {},
75
+ "bad_concepts": [],
76
+ }
77
+
78
+ # increase this value to create a stronger `nfsw` filter
79
+ # at the cost of increasing the possibility of filtering benign images
80
+ adjustment = 0.0
81
+
82
+ for concept_idx in range(len(special_cos_dist[0])):
83
+ concept_cos = special_cos_dist[i][concept_idx]
84
+ concept_threshold = self.special_care_embeds_weights[concept_idx].item()
85
+ result_img["special_scores"][concept_idx] = round(
86
+ concept_cos - concept_threshold + adjustment, 3
87
+ )
88
+ if result_img["special_scores"][concept_idx] > 0:
89
+ result_img["special_care"].append(
90
+ {concept_idx, result_img["special_scores"][concept_idx]}
91
+ )
92
+ adjustment = 0.01
93
+
94
+ for concept_idx in range(len(cos_dist[0])):
95
+ concept_cos = cos_dist[i][concept_idx]
96
+ concept_threshold = self.concept_embeds_weights[concept_idx].item()
97
+ result_img["concept_scores"][concept_idx] = round(
98
+ concept_cos - concept_threshold + adjustment, 3
99
+ )
100
+ if result_img["concept_scores"][concept_idx] > 0:
101
+ result_img["bad_concepts"].append(concept_idx)
102
+
103
+ result.append(result_img)
104
+
105
+ has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
106
+
107
+ return has_nsfw_concepts
108
+
109
+ @torch.no_grad()
110
+ def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
111
+ pooled_output = self.vision_model(clip_input)[1] # pooled_output
112
+ image_embeds = self.visual_projection(pooled_output)
113
+
114
+ special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
115
+ cos_dist = cosine_distance(image_embeds, self.concept_embeds)
116
+
117
+ # increase this value to create a stronger `nsfw` filter
118
+ # at the cost of increasing the possibility of filtering benign images
119
+ adjustment = 0.0
120
+
121
+ special_scores = (
122
+ special_cos_dist - self.special_care_embeds_weights + adjustment
123
+ )
124
+ # special_scores = special_scores.round(decimals=3)
125
+ special_care = torch.any(special_scores > 0, dim=1)
126
+ special_adjustment = special_care * 0.01
127
+ special_adjustment = special_adjustment.unsqueeze(1).expand(
128
+ -1, cos_dist.shape[1]
129
+ )
130
+
131
+ concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
132
+ # concept_scores = concept_scores.round(decimals=3)
133
+ has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
134
+
135
+ images[has_nsfw_concepts] = 0.0 # black image
136
+
137
+ return images, has_nsfw_concepts