Spaces:
Running
Running
import spaces | |
import torch | |
import gradio as gr | |
from gradio import processing_utils, utils | |
from PIL import Image | |
import random | |
from diffusers import ( | |
DiffusionPipeline, | |
AutoencoderKL, | |
StableDiffusionControlNetPipeline, | |
ControlNetModel, | |
StableDiffusionLatentUpscalePipeline, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionControlNetImg2ImgPipeline, | |
DPMSolverMultistepScheduler, # <-- Added import | |
EulerDiscreteScheduler # <-- Added import | |
) | |
import tempfile | |
import time | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
import user_history | |
from illusion_style import css | |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" | |
device='gpu' | |
# Initialize both pipelines | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) | |
#init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16) | |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)#, torch_dtype=torch.float16) | |
main_pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
BASE_MODEL, | |
controlnet=controlnet, | |
vae=vae, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
).to(device) | |
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True) | |
#main_pipe.unet.to(memory_format=torch.channels_last) | |
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True) | |
#model_id = "stabilityai/sd-x2-latent-upscaler" | |
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components) | |
#image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True) | |
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
#upscaler.to("cuda") | |
# Sampler map | |
SAMPLER_MAP = { | |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
} | |
def center_crop_resize(img, output_size=(512, 512)): | |
width, height = img.size | |
# Calculate dimensions to crop to the center | |
new_dimension = min(width, height) | |
left = (width - new_dimension)/2 | |
top = (height - new_dimension)/2 | |
right = (width + new_dimension)/2 | |
bottom = (height + new_dimension)/2 | |
# Crop and resize | |
img = img.crop((left, top, right, bottom)) | |
img = img.resize(output_size) | |
return img | |
def common_upscale(samples, width, height, upscale_method, crop=False): | |
if crop == "center": | |
old_width = samples.shape[3] | |
old_height = samples.shape[2] | |
old_aspect = old_width / old_height | |
new_aspect = width / height | |
x = 0 | |
y = 0 | |
if old_aspect > new_aspect: | |
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) | |
elif old_aspect < new_aspect: | |
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) | |
s = samples[:,:,y:old_height-y,x:old_width-x] | |
else: | |
s = samples | |
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) | |
def upscale(samples, upscale_method, scale_by): | |
#s = samples.copy() | |
width = round(samples["images"].shape[3] * scale_by) | |
height = round(samples["images"].shape[2] * scale_by) | |
s = common_upscale(samples["images"], width, height, upscale_method, "disabled") | |
return (s) | |
def check_inputs(prompt: str, control_image: Image.Image): | |
if control_image is None: | |
raise gr.Error("Please select or upload an Input Illusion") | |
if prompt is None or prompt == "": | |
raise gr.Error("Prompt is required") | |
def convert_to_pil(base64_image): | |
pil_image = Image.open(base64_image) | |
return pil_image | |
def convert_to_base64(pil_image): | |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file: | |
image.save(temp_file.name) | |
return temp_file.name | |
# Inference function | |
def inference( | |
control_image: Image.Image, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 8.0, | |
controlnet_conditioning_scale: float = 1, | |
control_guidance_start: float = 1, | |
control_guidance_end: float = 1, | |
upscaler_strength: float = 0.5, | |
seed: int = -1, | |
sampler = "DPM++ Karras SDE", | |
progress = gr.Progress(track_tqdm=True), | |
profile: gr.OAuthProfile | None = None, | |
): | |
start_time = time.time() | |
start_time_struct = time.localtime(start_time) | |
start_time_formatted = time.strftime("%H:%M:%S", start_time_struct) | |
print(f"Inference started at {start_time_formatted}") | |
# Generate the initial image | |
#init_image = init_pipe(prompt).images[0] | |
# Rest of your existing code | |
control_image_small = center_crop_resize(control_image) | |
control_image_large = center_crop_resize(control_image, (1024, 1024)) | |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) | |
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed | |
generator = torch.Generator(device=device).manual_seed(my_seed) | |
out = main_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=control_image_small, | |
guidance_scale=float(guidance_scale), | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
generator=generator, | |
control_guidance_start=float(control_guidance_start), | |
control_guidance_end=float(control_guidance_end), | |
num_inference_steps=15, | |
output_type="latent" | |
) | |
upscaled_latents = upscale(out, "nearest-exact", 2) | |
out_image = image_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
control_image=control_image_large, | |
image=upscaled_latents, | |
guidance_scale=float(guidance_scale), | |
generator=generator, | |
num_inference_steps=20, | |
strength=upscaler_strength, | |
control_guidance_start=float(control_guidance_start), | |
control_guidance_end=float(control_guidance_end), | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale) | |
) | |
end_time = time.time() | |
end_time_struct = time.localtime(end_time) | |
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct) | |
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s") | |
# Save image + metadata | |
user_history.save_image( | |
label=prompt, | |
image=out_image["images"][0], | |
profile=profile, | |
metadata={ | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"guidance_scale": guidance_scale, | |
"controlnet_conditioning_scale": controlnet_conditioning_scale, | |
"control_guidance_start": control_guidance_start, | |
"control_guidance_end": control_guidance_end, | |
"upscaler_strength": upscaler_strength, | |
"seed": seed, | |
"sampler": sampler, | |
}, | |
) | |
return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed | |
def greet(name): | |
return "Hello " + name + "!!" | |
demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
demo.launch() |