daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
raw
history blame
28.7 kB
from collections.abc import Iterable
from typing import Union
import torch
from torch import Tensor
import comfy.sample
import comfy.samplers
from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel
from . import freeinit
from .context import ContextOptions, ContextOptionsGroup
from .utils_model import SigmaSchedule
from .utils_motion import extend_to_batch_size, get_sorted_list_via_attr, prepare_mask_batch
from .logger import logger
def prepare_mask_ad(noise_mask, shape, device):
"""ensures noise mask is of proper dimensions"""
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
#noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
noise_mask = noise_mask.to(device)
return noise_mask
class NoiseLayerType:
DEFAULT = "default"
CONSTANT = "constant"
EMPTY = "empty"
REPEATED_CONTEXT = "repeated_context"
FREENOISE = "FreeNoise"
LIST = [DEFAULT, CONSTANT, EMPTY, REPEATED_CONTEXT, FREENOISE]
class NoiseApplication:
ADD = "add"
ADD_WEIGHTED = "add_weighted"
REPLACE = "replace"
LIST = [ADD, ADD_WEIGHTED, REPLACE]
class NoiseNormalize:
DISABLE = "disable"
NORMAL = "normal"
LIST = [DISABLE, NORMAL]
class SampleSettings:
def __init__(self, batch_offset: int=0, noise_type: str=None, seed_gen: str=None, seed_offset: int=0, noise_layers: 'NoiseLayerGroup'=None,
iteration_opts=None, seed_override:int=None, negative_cond_flipflop=False, adapt_denoise_steps: bool=False,
custom_cfg: 'CustomCFGKeyframeGroup'=None, sigma_schedule: SigmaSchedule=None):
self.batch_offset = batch_offset
self.noise_type = noise_type if noise_type is not None else NoiseLayerType.DEFAULT
self.seed_gen = seed_gen if seed_gen is not None else SeedNoiseGeneration.COMFY
self.noise_layers = noise_layers if noise_layers else NoiseLayerGroup()
self.iteration_opts = iteration_opts if iteration_opts else IterationOptions()
self.seed_offset = seed_offset
self.seed_override = seed_override
self.negative_cond_flipflop = negative_cond_flipflop
self.adapt_denoise_steps = adapt_denoise_steps
self.custom_cfg = custom_cfg.clone() if custom_cfg else custom_cfg
self.sigma_schedule = sigma_schedule
def prepare_noise(self, seed: int, latents: Tensor, noise: Tensor, extra_seed_offset=0, extra_args:dict={}, force_create_noise=True):
if self.seed_override is not None:
seed = self.seed_override
# if seed is iterable, attempt to do per-latent noises
if isinstance(seed, Iterable):
noise = SeedNoiseGeneration.create_noise_individual_seeds(seeds=seed, latents=latents, seed_offset=self.seed_offset+extra_seed_offset, extra_args=extra_args)
seed = seed[0]+self.seed_offset
else:
seed += self.seed_offset
# replace initial noise if not batch_offset 0 or Comfy seed_gen or not NoiseType default
if self.batch_offset != 0 or self.seed_offset != 0 or self.noise_type != NoiseLayerType.DEFAULT or self.seed_gen != SeedNoiseGeneration.COMFY or force_create_noise:
noise = SeedNoiseGeneration.create_noise(seed=seed+extra_seed_offset, latents=latents, existing_seed_gen=self.seed_gen, seed_gen=self.seed_gen,
noise_type=self.noise_type, batch_offset=self.batch_offset, extra_args=extra_args)
# apply noise layers
for noise_layer in self.noise_layers.layers:
# first, generate new noise matching seed gen override
layer_noise = noise_layer.create_layer_noise(existing_seed_gen=self.seed_gen, seed=seed, latents=latents,
extra_seed_offset=extra_seed_offset, extra_args=extra_args)
# next, get noise after applying layer
noise = noise_layer.apply_layer_noise(new_noise=layer_noise, old_noise=noise)
# noise prepared now
return noise
def pre_run(self, model: ModelPatcher):
if self.custom_cfg is not None:
self.custom_cfg.reset()
def cleanup(self):
if self.custom_cfg is not None:
self.custom_cfg.reset()
def clone(self):
return SampleSettings(batch_offset=self.batch_offset, noise_type=self.noise_type, seed_gen=self.seed_gen, seed_offset=self.seed_offset,
noise_layers=self.noise_layers.clone(), iteration_opts=self.iteration_opts, seed_override=self.seed_override,
negative_cond_flipflop=self.negative_cond_flipflop, adapt_denoise_steps=self.adapt_denoise_steps, custom_cfg=self.custom_cfg, sigma_schedule=self.sigma_schedule)
class NoiseLayer:
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None):
self.application: str = NoiseApplication.REPLACE
self.noise_type = noise_type
self.batch_offset = batch_offset
self.seed_gen_override = seed_gen_override
self.seed_offset = seed_offset
self.seed_override = seed_override
self.mask = mask
def create_layer_noise(self, existing_seed_gen: str, seed: int, latents: Tensor, extra_seed_offset=0, extra_args:dict={}) -> Tensor:
if self.seed_override is not None:
seed = self.seed_override
# if seed is iterable, attempt to do per-latent noises
if isinstance(seed, Iterable):
return SeedNoiseGeneration.create_noise_individual_seeds(seeds=seed, latents=latents, seed_offset=self.seed_offset+extra_seed_offset, extra_args=extra_args)
seed += self.seed_offset + extra_seed_offset
return SeedNoiseGeneration.create_noise(seed=seed, latents=latents, existing_seed_gen=existing_seed_gen, seed_gen=self.seed_gen_override,
noise_type=self.noise_type, batch_offset=self.batch_offset, extra_args=extra_args)
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor:
return old_noise
def get_noise_mask(self, noise: Tensor) -> Tensor:
if self.mask is None:
return 1
noise_mask = self.mask.reshape((-1, 1, self.mask.shape[-2], self.mask.shape[-1]))
return prepare_mask_ad(noise_mask, noise.shape, noise.device)
class NoiseLayerReplace(NoiseLayer):
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None):
super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask)
self.application = NoiseApplication.REPLACE
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor:
noise_mask = self.get_noise_mask(old_noise)
return (1-noise_mask)*old_noise + noise_mask*new_noise
class NoiseLayerAdd(NoiseLayer):
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None,
noise_weight=1.0):
super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask)
self.noise_weight = noise_weight
self.application = NoiseApplication.ADD
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor:
noise_mask = self.get_noise_mask(old_noise)
return (1-noise_mask)*old_noise + noise_mask*(old_noise + new_noise * self.noise_weight)
class NoiseLayerAddWeighted(NoiseLayerAdd):
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None,
noise_weight=1.0, balance_multiplier=1.0):
super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask, noise_weight)
self.balance_multiplier = balance_multiplier
self.application = NoiseApplication.ADD_WEIGHTED
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor:
noise_mask = self.get_noise_mask(old_noise)
return (1-noise_mask)*old_noise + noise_mask*(old_noise * (1.0-(self.noise_weight*self.balance_multiplier)) + new_noise * self.noise_weight)
class NoiseLayerGroup:
def __init__(self):
self.layers: list[NoiseLayer] = []
def add(self, layer: NoiseLayer) -> None:
# add to the end of list
self.layers.append(layer)
def add_to_start(self, layer: NoiseLayer) -> None:
# add to the beginning of list
self.layers.insert(0, layer)
def __getitem__(self, index) -> NoiseLayer:
return self.layers[index]
def is_empty(self) -> bool:
return len(self.layers) == 0
def clone(self) -> 'NoiseLayerGroup':
cloned = NoiseLayerGroup()
for layer in self.layers:
cloned.add(layer)
return cloned
class SeedNoiseGeneration:
COMFY = "comfy"
AUTO1111 = "auto1111"
AUTO1111GPU = "auto1111 [gpu]" # TODO: implement this
USE_EXISTING = "use existing"
LIST = [COMFY, AUTO1111]
LIST_WITH_OVERRIDE = [USE_EXISTING, COMFY, AUTO1111]
@classmethod
def create_noise(cls, seed: int, latents: Tensor, existing_seed_gen: str=COMFY, seed_gen: str=USE_EXISTING, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}):
# determine if should use existing type
if seed_gen == cls.USE_EXISTING:
seed_gen = existing_seed_gen
if seed_gen == cls.COMFY:
return cls.create_noise_comfy(seed, latents, noise_type, batch_offset, extra_args)
elif seed_gen in [cls.AUTO1111, cls.AUTO1111GPU]:
return cls.create_noise_auto1111(seed, latents, noise_type, batch_offset, extra_args)
raise ValueError(f"Noise seed_gen {seed_gen} is not recognized.")
@staticmethod
def create_noise_comfy(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}):
common_noise = SeedNoiseGeneration._create_common_noise(seed, latents, noise_type, batch_offset, extra_args)
if common_noise is not None:
return common_noise
if noise_type == NoiseLayerType.CONSTANT:
generator = torch.manual_seed(seed)
length = latents.shape[0]
single_shape = (1 + batch_offset, latents.shape[1], latents.shape[2], latents.shape[3])
single_noise = torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu")
return torch.cat([single_noise[batch_offset:]] * length, dim=0)
# comfy creates noise with a single seed for the entire shape of the latents batched tensor
generator = torch.manual_seed(seed)
offset_shape = (latents.shape[0] + batch_offset, latents.shape[1], latents.shape[2], latents.shape[3])
final_noise = torch.randn(offset_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu")
final_noise = final_noise[batch_offset:]
# convert to derivative noise type, if needed
derivative_noise = SeedNoiseGeneration._create_derivative_noise(final_noise, noise_type=noise_type, seed=seed, extra_args=extra_args)
if derivative_noise is not None:
return derivative_noise
return final_noise
@staticmethod
def create_noise_auto1111(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}):
common_noise = SeedNoiseGeneration._create_common_noise(seed, latents, noise_type, batch_offset, extra_args)
if common_noise is not None:
return common_noise
if noise_type == NoiseLayerType.CONSTANT:
generator = torch.manual_seed(seed+batch_offset)
length = latents.shape[0]
single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3])
single_noise = torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu")
return torch.cat([single_noise] * length, dim=0)
# auto1111 applies growing seeds for a batch
length = latents.shape[0]
single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3])
all_noises = []
# i starts at 0
for i in range(length):
generator = torch.manual_seed(seed+i+batch_offset)
all_noises.append(torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu"))
final_noise = torch.cat(all_noises, dim=0)
# convert to derivative noise type, if needed
derivative_noise = SeedNoiseGeneration._create_derivative_noise(final_noise, noise_type=noise_type, seed=seed, extra_args=extra_args)
if derivative_noise is not None:
return derivative_noise
return final_noise
@staticmethod
def create_noise_individual_seeds(seeds: list[int], latents: Tensor, seed_offset: int=0, extra_args: dict={}):
length = latents.shape[0]
if len(seeds) < length:
raise ValueError(f"{len(seeds)} seeds in seed_override were provided, but at least {length} are required to work with the current latents.")
seeds = seeds[:length]
single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3])
all_noises = []
for seed in seeds:
generator = torch.manual_seed(seed+seed_offset)
all_noises.append(torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu"))
return torch.cat(all_noises, dim=0)
@staticmethod
def _create_common_noise(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}):
if noise_type == NoiseLayerType.EMPTY:
return torch.zeros_like(latents)
return None
@staticmethod
def _create_derivative_noise(noise: Tensor, noise_type: str, seed: int, extra_args: dict):
derivative_func = DERIVATIVE_NOISE_FUNC_MAP.get(noise_type, None)
if derivative_func is None:
return None
return derivative_func(noise=noise, seed=seed, extra_args=extra_args)
@staticmethod
def _convert_to_repeated_context(noise: Tensor, extra_args: dict, **kwargs):
# if no context_length, return unmodified noise
opts: ContextOptionsGroup = extra_args["context_options"]
context_length: int = opts.context_length if not opts.view_options else opts.view_options.context_length
if context_length is None:
return noise
length = noise.shape[0]
noise = noise[:context_length]
cat_count = (length // context_length) + 1
return torch.cat([noise] * cat_count, dim=0)[:length]
@staticmethod
def _convert_to_freenoise(noise: Tensor, seed: int, extra_args: dict, **kwargs):
# if no context_length, return unmodified noise
opts: ContextOptionsGroup = extra_args["context_options"]
context_length: int = opts.context_length if not opts.view_options else opts.view_options.context_length
context_overlap: int = opts.context_overlap if not opts.view_options else opts.view_options.context_overlap
video_length: int = noise.shape[0]
if context_length is None:
return noise
delta = context_length - context_overlap
generator = torch.manual_seed(seed)
for start_idx in range(0, video_length-context_length, delta):
# start_idx corresponds to the beginning of a context window
# goal: place shuffled in the delta region right after the end of the context window
# if space after context window is not enough to place the noise, adjust and finish
place_idx = start_idx + context_length
# if place_idx is outside the valid indexes, we are already finished
if place_idx >= video_length:
break
end_idx = place_idx - 1
# if there is not enough room to copy delta amount of indexes, copy limited amount and finish
if end_idx + delta >= video_length:
final_delta = video_length - place_idx
# generate list of indexes in final delta region
list_idx = torch.Tensor(list(range(start_idx,start_idx+final_delta))).to(torch.long)
# shuffle list
list_idx = list_idx[torch.randperm(final_delta, generator=generator)]
# apply shuffled indexes
noise[place_idx:place_idx+final_delta] = noise[list_idx]
break
# otherwise, do normal behavior
# generate list of indexes in delta region
list_idx = torch.Tensor(list(range(start_idx,start_idx+delta))).to(torch.long)
# shuffle list
list_idx = list_idx[torch.randperm(delta, generator=generator)]
# apply shuffled indexes
noise[place_idx:place_idx+delta] = noise[list_idx]
return noise
DERIVATIVE_NOISE_FUNC_MAP = {
NoiseLayerType.REPEATED_CONTEXT: SeedNoiseGeneration._convert_to_repeated_context,
NoiseLayerType.FREENOISE: SeedNoiseGeneration._convert_to_freenoise,
}
class IterationOptions:
SAMPLER = "sampler"
def __init__(self, iterations: int=1, cache_init_noise=False, cache_init_latents=False,
iter_batch_offset: int=0, iter_seed_offset: int=0):
self.iterations = iterations
self.cache_init_noise = cache_init_noise
self.cache_init_latents = cache_init_latents
self.iter_batch_offset = iter_batch_offset
self.iter_seed_offset = iter_seed_offset
self.need_sampler = False
def get_sigma(self, model: ModelPatcher, step: int):
model_sampling = model.model.model_sampling
if "model_sampling" in model.object_patches:
model_sampling = model.object_patches["model_sampling"]
return model_sampling.sigmas[step]
def initialize(self, latents: Tensor):
pass
def preprocess_latents(self, curr_i: int, model: ModelPatcher, latents: Tensor, noise: Tensor,
seed: int, sample_settings: SampleSettings, noise_extra_args: dict, **kwargs):
if curr_i == 0 or (self.iter_batch_offset == 0 and self.iter_seed_offset == 0):
return latents, noise
temp_sample_settings = sample_settings.clone()
temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i
temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i
return latents, temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None,
extra_args=noise_extra_args, force_create_noise=True)
class FreeInitOptions(IterationOptions):
FREEINIT_SAMPLER = "FreeInit [sampler sigma]"
FREEINIT_MODEL = "FreeInit [model sigma]"
DINKINIT_V1 = "DinkInit_v1"
LIST = [FREEINIT_SAMPLER, FREEINIT_MODEL, DINKINIT_V1]
def __init__(self, iterations: int, step: int=999, apply_to_1st_iter: bool=False,
filter=freeinit.FreeInitFilter.GAUSSIAN, d_s=0.25, d_t=0.25, n=4, init_type=FREEINIT_SAMPLER,
iter_batch_offset: int=0, iter_seed_offset: int=1):
super().__init__(iterations=iterations, cache_init_noise=True, cache_init_latents=True,
iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset)
self.apply_to_1st_iter = apply_to_1st_iter
self.step = step
self.filter = filter
self.d_s = d_s
self.d_t = d_t
self.n = n
self.freq_filter = None
self.freq_filter2 = None
self.need_sampler = True if init_type in [self.FREEINIT_SAMPLER] else False
self.init_type = init_type
def initialize(self, latents: Tensor):
self.freq_filter = freeinit.get_freq_filter(latents.shape, device=latents.device, filter_type=self.filter,
n=self.n, d_s=self.d_s, d_t=self.d_t)
def preprocess_latents(self, curr_i: int, model: ModelPatcher, latents: Tensor, noise: Tensor, cached_latents: Tensor, cached_noise: Tensor,
seed:int, sample_settings: SampleSettings, noise_extra_args: dict, sampler: comfy.samplers.KSampler=None, **kwargs):
# if first iter and should not apply, do nothing
if curr_i == 0 and not self.apply_to_1st_iter:
return latents, noise
# otherwise, do FreeInit stuff
if self.init_type in [self.FREEINIT_SAMPLER, self.FREEINIT_MODEL]:
# NOTE: This should be very close (if not exactly) to how FreeInit is intended to initialize noise the latents.
# The trick is that FreeInit is dependent on the behavior of diffuser's DDIMScheduler.add_noise function.
# The typical noising method of latents + noise * sigma will NOT work.
# 1. apply initial noise with appropriate step sigma, normalized against scale_factor
if sampler is not None:
sigma = sampler.sigmas[999-self.step].to(latents.device) / (model.model.latent_format.scale_factor)
else:
sigma = self.get_sigma(model, self.step-1000).to(latents.device) / (model.model.latent_format.scale_factor)
alpha_cumprod = 1 / ((sigma * sigma) + 1)
sqrt_alpha_prod = alpha_cumprod ** 0.5
sqrt_one_minus_alpha_prod = (1 - alpha_cumprod) ** 0.5
noised_latents = latents * sqrt_alpha_prod + noise * sqrt_one_minus_alpha_prod
# 2. create random noise z_rand for high frequency
temp_sample_settings = sample_settings.clone()
temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i
temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i
z_rand = temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None,
extra_args=noise_extra_args, force_create_noise=True)
# 3. noise reinitialization - combines low freq. noise from noised_latents and high freq. noise from z_rand
noised_latents = freeinit.freq_mix_3d(x=noised_latents, noise=z_rand.to(dtype=latents.dtype, device=latents.device), LPF=self.freq_filter)
return cached_latents, noised_latents
elif self.init_type == self.DINKINIT_V1:
# NOTE: This was my first attempt at implementing FreeInit; it sorta works due to my alpha_cumprod shenanigans,
# but completely by accident.
# 1. apply initial noise with appropriate step sigma
sigma = self.get_sigma(model, self.step-1000).to(latents.device)
alpha_cumprod = 1 / ((sigma * sigma) + 1) #1 / ((sigma * sigma)) # 1 / ((sigma * sigma) + 1)
noised_latents = (latents + (cached_noise * sigma)) * alpha_cumprod
# 2. create random noise z_rand for high frequency
temp_sample_settings = sample_settings.clone()
temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i
temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i
z_rand = temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None,
extra_args=noise_extra_args, force_create_noise=True)
####z_rand = torch.randn_like(latents, dtype=latents.dtype, device=latents.device)
# 3. noise reinitialization - combines low freq. noise from noised_latents and high freq. noise from z_rand
noised_latents = freeinit.freq_mix_3d(x=noised_latents, noise=z_rand.to(dtype=latents.dtype, device=latents.device), LPF=self.freq_filter)
return cached_latents, noised_latents
else:
raise ValueError(f"FreeInit init_type '{self.init_type}' is not recognized.")
class CustomCFGKeyframe:
def __init__(self, cfg_multival: Union[float, Tensor], start_percent=0.0, guarantee_steps=1):
self.cfg_multival = cfg_multival
# scheduling
self.start_percent = float(start_percent)
self.start_t = 999999999.9
self.guarantee_steps = guarantee_steps
def clone(self):
c = CustomCFGKeyframe(cfg_multival=self.cfg_multival,
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
c.start_t = self.start_t
return c
class CustomCFGKeyframeGroup:
def __init__(self):
self.keyframes: list[CustomCFGKeyframe] = []
self._current_keyframe: CustomCFGKeyframe = None
self._current_used_steps: int = 0
self._current_index: int = 0
def reset(self):
self._current_keyframe = None
self._current_used_steps = 0
self._current_index = 0
self._set_first_as_current()
def add(self, keyframe: CustomCFGKeyframe):
# add to end of list, then sort
self.keyframes.append(keyframe)
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
self._set_first_as_current()
def _set_first_as_current(self):
if len(self.keyframes) > 0:
self._current_keyframe = self.keyframes[0]
else:
self._current_keyframe = None
def has_index(self, index: int) -> int:
return index >=0 and index < len(self.keyframes)
def is_empty(self) -> bool:
return len(self.keyframes) == 0
def clone(self):
cloned = CustomCFGKeyframeGroup()
for keyframe in self.keyframes:
cloned.keyframes.append(keyframe)
cloned._set_first_as_current()
return cloned
def initialize_timesteps(self, model: BaseModel):
for keyframe in self.keyframes:
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
def prepare_current_keyframe(self, t: Tensor):
curr_t: float = t[0]
prev_index = self._current_index
# if met guaranteed steps, look for next keyframe in case need to switch
if self._current_used_steps >= self._current_keyframe.guarantee_steps:
# if has next index, loop through and see if need t oswitch
if self.has_index(self._current_index+1):
for i in range(self._current_index+1, len(self.keyframes)):
eval_c = self.keyframes[i]
# check if start_t is greater or equal to curr_t
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
if eval_c.start_t >= curr_t:
self._current_index = i
self._current_keyframe = eval_c
self._current_used_steps = 0
# if guarantee_steps greater than zero, stop searching for other keyframes
if self._current_keyframe.guarantee_steps > 0:
break
# if eval_c is outside the percent range, stop looking further
else: break
# update steps current context is used
self._current_used_steps += 1
def patch_model(self, model: ModelPatcher) -> ModelPatcher:
def evolved_custom_cfg(args):
cond: Tensor = args["cond"]
uncond: Tensor = args["uncond"]
# cond scale is based purely off of CustomCFG - cond_scale input in sampler is ignored!
cond_scale = self.cfg_multival
if isinstance(cond_scale, Tensor):
cond_scale = prepare_mask_batch(cond_scale.to(cond.dtype).to(cond.device), cond.shape)
cond_scale = extend_to_batch_size(cond_scale, cond.shape[0])
return uncond + (cond - uncond) * cond_scale
model = model.clone()
model.set_model_sampler_cfg_function(evolved_custom_cfg)
return model
# properties shadow those of CustomCFGKeyframe
@property
def cfg_multival(self):
if self._current_keyframe != None:
return self._current_keyframe.cfg_multival
return None