Spaces:
Running
Running
from collections.abc import Iterable | |
from typing import Union | |
import torch | |
from torch import Tensor | |
import comfy.sample | |
import comfy.samplers | |
from comfy.model_patcher import ModelPatcher | |
from comfy.model_base import BaseModel | |
from . import freeinit | |
from .context import ContextOptions, ContextOptionsGroup | |
from .utils_model import SigmaSchedule | |
from .utils_motion import extend_to_batch_size, get_sorted_list_via_attr, prepare_mask_batch | |
from .logger import logger | |
def prepare_mask_ad(noise_mask, shape, device): | |
"""ensures noise mask is of proper dimensions""" | |
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") | |
#noise_mask = noise_mask.round() | |
noise_mask = torch.cat([noise_mask] * shape[1], dim=1) | |
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0]) | |
noise_mask = noise_mask.to(device) | |
return noise_mask | |
class NoiseLayerType: | |
DEFAULT = "default" | |
CONSTANT = "constant" | |
EMPTY = "empty" | |
REPEATED_CONTEXT = "repeated_context" | |
FREENOISE = "FreeNoise" | |
LIST = [DEFAULT, CONSTANT, EMPTY, REPEATED_CONTEXT, FREENOISE] | |
class NoiseApplication: | |
ADD = "add" | |
ADD_WEIGHTED = "add_weighted" | |
REPLACE = "replace" | |
LIST = [ADD, ADD_WEIGHTED, REPLACE] | |
class NoiseNormalize: | |
DISABLE = "disable" | |
NORMAL = "normal" | |
LIST = [DISABLE, NORMAL] | |
class SampleSettings: | |
def __init__(self, batch_offset: int=0, noise_type: str=None, seed_gen: str=None, seed_offset: int=0, noise_layers: 'NoiseLayerGroup'=None, | |
iteration_opts=None, seed_override:int=None, negative_cond_flipflop=False, adapt_denoise_steps: bool=False, | |
custom_cfg: 'CustomCFGKeyframeGroup'=None, sigma_schedule: SigmaSchedule=None): | |
self.batch_offset = batch_offset | |
self.noise_type = noise_type if noise_type is not None else NoiseLayerType.DEFAULT | |
self.seed_gen = seed_gen if seed_gen is not None else SeedNoiseGeneration.COMFY | |
self.noise_layers = noise_layers if noise_layers else NoiseLayerGroup() | |
self.iteration_opts = iteration_opts if iteration_opts else IterationOptions() | |
self.seed_offset = seed_offset | |
self.seed_override = seed_override | |
self.negative_cond_flipflop = negative_cond_flipflop | |
self.adapt_denoise_steps = adapt_denoise_steps | |
self.custom_cfg = custom_cfg.clone() if custom_cfg else custom_cfg | |
self.sigma_schedule = sigma_schedule | |
def prepare_noise(self, seed: int, latents: Tensor, noise: Tensor, extra_seed_offset=0, extra_args:dict={}, force_create_noise=True): | |
if self.seed_override is not None: | |
seed = self.seed_override | |
# if seed is iterable, attempt to do per-latent noises | |
if isinstance(seed, Iterable): | |
noise = SeedNoiseGeneration.create_noise_individual_seeds(seeds=seed, latents=latents, seed_offset=self.seed_offset+extra_seed_offset, extra_args=extra_args) | |
seed = seed[0]+self.seed_offset | |
else: | |
seed += self.seed_offset | |
# replace initial noise if not batch_offset 0 or Comfy seed_gen or not NoiseType default | |
if self.batch_offset != 0 or self.seed_offset != 0 or self.noise_type != NoiseLayerType.DEFAULT or self.seed_gen != SeedNoiseGeneration.COMFY or force_create_noise: | |
noise = SeedNoiseGeneration.create_noise(seed=seed+extra_seed_offset, latents=latents, existing_seed_gen=self.seed_gen, seed_gen=self.seed_gen, | |
noise_type=self.noise_type, batch_offset=self.batch_offset, extra_args=extra_args) | |
# apply noise layers | |
for noise_layer in self.noise_layers.layers: | |
# first, generate new noise matching seed gen override | |
layer_noise = noise_layer.create_layer_noise(existing_seed_gen=self.seed_gen, seed=seed, latents=latents, | |
extra_seed_offset=extra_seed_offset, extra_args=extra_args) | |
# next, get noise after applying layer | |
noise = noise_layer.apply_layer_noise(new_noise=layer_noise, old_noise=noise) | |
# noise prepared now | |
return noise | |
def pre_run(self, model: ModelPatcher): | |
if self.custom_cfg is not None: | |
self.custom_cfg.reset() | |
def cleanup(self): | |
if self.custom_cfg is not None: | |
self.custom_cfg.reset() | |
def clone(self): | |
return SampleSettings(batch_offset=self.batch_offset, noise_type=self.noise_type, seed_gen=self.seed_gen, seed_offset=self.seed_offset, | |
noise_layers=self.noise_layers.clone(), iteration_opts=self.iteration_opts, seed_override=self.seed_override, | |
negative_cond_flipflop=self.negative_cond_flipflop, adapt_denoise_steps=self.adapt_denoise_steps, custom_cfg=self.custom_cfg, sigma_schedule=self.sigma_schedule) | |
class NoiseLayer: | |
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None): | |
self.application: str = NoiseApplication.REPLACE | |
self.noise_type = noise_type | |
self.batch_offset = batch_offset | |
self.seed_gen_override = seed_gen_override | |
self.seed_offset = seed_offset | |
self.seed_override = seed_override | |
self.mask = mask | |
def create_layer_noise(self, existing_seed_gen: str, seed: int, latents: Tensor, extra_seed_offset=0, extra_args:dict={}) -> Tensor: | |
if self.seed_override is not None: | |
seed = self.seed_override | |
# if seed is iterable, attempt to do per-latent noises | |
if isinstance(seed, Iterable): | |
return SeedNoiseGeneration.create_noise_individual_seeds(seeds=seed, latents=latents, seed_offset=self.seed_offset+extra_seed_offset, extra_args=extra_args) | |
seed += self.seed_offset + extra_seed_offset | |
return SeedNoiseGeneration.create_noise(seed=seed, latents=latents, existing_seed_gen=existing_seed_gen, seed_gen=self.seed_gen_override, | |
noise_type=self.noise_type, batch_offset=self.batch_offset, extra_args=extra_args) | |
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: | |
return old_noise | |
def get_noise_mask(self, noise: Tensor) -> Tensor: | |
if self.mask is None: | |
return 1 | |
noise_mask = self.mask.reshape((-1, 1, self.mask.shape[-2], self.mask.shape[-1])) | |
return prepare_mask_ad(noise_mask, noise.shape, noise.device) | |
class NoiseLayerReplace(NoiseLayer): | |
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None): | |
super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask) | |
self.application = NoiseApplication.REPLACE | |
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: | |
noise_mask = self.get_noise_mask(old_noise) | |
return (1-noise_mask)*old_noise + noise_mask*new_noise | |
class NoiseLayerAdd(NoiseLayer): | |
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None, | |
noise_weight=1.0): | |
super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask) | |
self.noise_weight = noise_weight | |
self.application = NoiseApplication.ADD | |
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: | |
noise_mask = self.get_noise_mask(old_noise) | |
return (1-noise_mask)*old_noise + noise_mask*(old_noise + new_noise * self.noise_weight) | |
class NoiseLayerAddWeighted(NoiseLayerAdd): | |
def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None, | |
noise_weight=1.0, balance_multiplier=1.0): | |
super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask, noise_weight) | |
self.balance_multiplier = balance_multiplier | |
self.application = NoiseApplication.ADD_WEIGHTED | |
def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: | |
noise_mask = self.get_noise_mask(old_noise) | |
return (1-noise_mask)*old_noise + noise_mask*(old_noise * (1.0-(self.noise_weight*self.balance_multiplier)) + new_noise * self.noise_weight) | |
class NoiseLayerGroup: | |
def __init__(self): | |
self.layers: list[NoiseLayer] = [] | |
def add(self, layer: NoiseLayer) -> None: | |
# add to the end of list | |
self.layers.append(layer) | |
def add_to_start(self, layer: NoiseLayer) -> None: | |
# add to the beginning of list | |
self.layers.insert(0, layer) | |
def __getitem__(self, index) -> NoiseLayer: | |
return self.layers[index] | |
def is_empty(self) -> bool: | |
return len(self.layers) == 0 | |
def clone(self) -> 'NoiseLayerGroup': | |
cloned = NoiseLayerGroup() | |
for layer in self.layers: | |
cloned.add(layer) | |
return cloned | |
class SeedNoiseGeneration: | |
COMFY = "comfy" | |
AUTO1111 = "auto1111" | |
AUTO1111GPU = "auto1111 [gpu]" # TODO: implement this | |
USE_EXISTING = "use existing" | |
LIST = [COMFY, AUTO1111] | |
LIST_WITH_OVERRIDE = [USE_EXISTING, COMFY, AUTO1111] | |
def create_noise(cls, seed: int, latents: Tensor, existing_seed_gen: str=COMFY, seed_gen: str=USE_EXISTING, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}): | |
# determine if should use existing type | |
if seed_gen == cls.USE_EXISTING: | |
seed_gen = existing_seed_gen | |
if seed_gen == cls.COMFY: | |
return cls.create_noise_comfy(seed, latents, noise_type, batch_offset, extra_args) | |
elif seed_gen in [cls.AUTO1111, cls.AUTO1111GPU]: | |
return cls.create_noise_auto1111(seed, latents, noise_type, batch_offset, extra_args) | |
raise ValueError(f"Noise seed_gen {seed_gen} is not recognized.") | |
def create_noise_comfy(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}): | |
common_noise = SeedNoiseGeneration._create_common_noise(seed, latents, noise_type, batch_offset, extra_args) | |
if common_noise is not None: | |
return common_noise | |
if noise_type == NoiseLayerType.CONSTANT: | |
generator = torch.manual_seed(seed) | |
length = latents.shape[0] | |
single_shape = (1 + batch_offset, latents.shape[1], latents.shape[2], latents.shape[3]) | |
single_noise = torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu") | |
return torch.cat([single_noise[batch_offset:]] * length, dim=0) | |
# comfy creates noise with a single seed for the entire shape of the latents batched tensor | |
generator = torch.manual_seed(seed) | |
offset_shape = (latents.shape[0] + batch_offset, latents.shape[1], latents.shape[2], latents.shape[3]) | |
final_noise = torch.randn(offset_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu") | |
final_noise = final_noise[batch_offset:] | |
# convert to derivative noise type, if needed | |
derivative_noise = SeedNoiseGeneration._create_derivative_noise(final_noise, noise_type=noise_type, seed=seed, extra_args=extra_args) | |
if derivative_noise is not None: | |
return derivative_noise | |
return final_noise | |
def create_noise_auto1111(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}): | |
common_noise = SeedNoiseGeneration._create_common_noise(seed, latents, noise_type, batch_offset, extra_args) | |
if common_noise is not None: | |
return common_noise | |
if noise_type == NoiseLayerType.CONSTANT: | |
generator = torch.manual_seed(seed+batch_offset) | |
length = latents.shape[0] | |
single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3]) | |
single_noise = torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu") | |
return torch.cat([single_noise] * length, dim=0) | |
# auto1111 applies growing seeds for a batch | |
length = latents.shape[0] | |
single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3]) | |
all_noises = [] | |
# i starts at 0 | |
for i in range(length): | |
generator = torch.manual_seed(seed+i+batch_offset) | |
all_noises.append(torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu")) | |
final_noise = torch.cat(all_noises, dim=0) | |
# convert to derivative noise type, if needed | |
derivative_noise = SeedNoiseGeneration._create_derivative_noise(final_noise, noise_type=noise_type, seed=seed, extra_args=extra_args) | |
if derivative_noise is not None: | |
return derivative_noise | |
return final_noise | |
def create_noise_individual_seeds(seeds: list[int], latents: Tensor, seed_offset: int=0, extra_args: dict={}): | |
length = latents.shape[0] | |
if len(seeds) < length: | |
raise ValueError(f"{len(seeds)} seeds in seed_override were provided, but at least {length} are required to work with the current latents.") | |
seeds = seeds[:length] | |
single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3]) | |
all_noises = [] | |
for seed in seeds: | |
generator = torch.manual_seed(seed+seed_offset) | |
all_noises.append(torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device="cpu")) | |
return torch.cat(all_noises, dim=0) | |
def _create_common_noise(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}): | |
if noise_type == NoiseLayerType.EMPTY: | |
return torch.zeros_like(latents) | |
return None | |
def _create_derivative_noise(noise: Tensor, noise_type: str, seed: int, extra_args: dict): | |
derivative_func = DERIVATIVE_NOISE_FUNC_MAP.get(noise_type, None) | |
if derivative_func is None: | |
return None | |
return derivative_func(noise=noise, seed=seed, extra_args=extra_args) | |
def _convert_to_repeated_context(noise: Tensor, extra_args: dict, **kwargs): | |
# if no context_length, return unmodified noise | |
opts: ContextOptionsGroup = extra_args["context_options"] | |
context_length: int = opts.context_length if not opts.view_options else opts.view_options.context_length | |
if context_length is None: | |
return noise | |
length = noise.shape[0] | |
noise = noise[:context_length] | |
cat_count = (length // context_length) + 1 | |
return torch.cat([noise] * cat_count, dim=0)[:length] | |
def _convert_to_freenoise(noise: Tensor, seed: int, extra_args: dict, **kwargs): | |
# if no context_length, return unmodified noise | |
opts: ContextOptionsGroup = extra_args["context_options"] | |
context_length: int = opts.context_length if not opts.view_options else opts.view_options.context_length | |
context_overlap: int = opts.context_overlap if not opts.view_options else opts.view_options.context_overlap | |
video_length: int = noise.shape[0] | |
if context_length is None: | |
return noise | |
delta = context_length - context_overlap | |
generator = torch.manual_seed(seed) | |
for start_idx in range(0, video_length-context_length, delta): | |
# start_idx corresponds to the beginning of a context window | |
# goal: place shuffled in the delta region right after the end of the context window | |
# if space after context window is not enough to place the noise, adjust and finish | |
place_idx = start_idx + context_length | |
# if place_idx is outside the valid indexes, we are already finished | |
if place_idx >= video_length: | |
break | |
end_idx = place_idx - 1 | |
# if there is not enough room to copy delta amount of indexes, copy limited amount and finish | |
if end_idx + delta >= video_length: | |
final_delta = video_length - place_idx | |
# generate list of indexes in final delta region | |
list_idx = torch.Tensor(list(range(start_idx,start_idx+final_delta))).to(torch.long) | |
# shuffle list | |
list_idx = list_idx[torch.randperm(final_delta, generator=generator)] | |
# apply shuffled indexes | |
noise[place_idx:place_idx+final_delta] = noise[list_idx] | |
break | |
# otherwise, do normal behavior | |
# generate list of indexes in delta region | |
list_idx = torch.Tensor(list(range(start_idx,start_idx+delta))).to(torch.long) | |
# shuffle list | |
list_idx = list_idx[torch.randperm(delta, generator=generator)] | |
# apply shuffled indexes | |
noise[place_idx:place_idx+delta] = noise[list_idx] | |
return noise | |
DERIVATIVE_NOISE_FUNC_MAP = { | |
NoiseLayerType.REPEATED_CONTEXT: SeedNoiseGeneration._convert_to_repeated_context, | |
NoiseLayerType.FREENOISE: SeedNoiseGeneration._convert_to_freenoise, | |
} | |
class IterationOptions: | |
SAMPLER = "sampler" | |
def __init__(self, iterations: int=1, cache_init_noise=False, cache_init_latents=False, | |
iter_batch_offset: int=0, iter_seed_offset: int=0): | |
self.iterations = iterations | |
self.cache_init_noise = cache_init_noise | |
self.cache_init_latents = cache_init_latents | |
self.iter_batch_offset = iter_batch_offset | |
self.iter_seed_offset = iter_seed_offset | |
self.need_sampler = False | |
def get_sigma(self, model: ModelPatcher, step: int): | |
model_sampling = model.model.model_sampling | |
if "model_sampling" in model.object_patches: | |
model_sampling = model.object_patches["model_sampling"] | |
return model_sampling.sigmas[step] | |
def initialize(self, latents: Tensor): | |
pass | |
def preprocess_latents(self, curr_i: int, model: ModelPatcher, latents: Tensor, noise: Tensor, | |
seed: int, sample_settings: SampleSettings, noise_extra_args: dict, **kwargs): | |
if curr_i == 0 or (self.iter_batch_offset == 0 and self.iter_seed_offset == 0): | |
return latents, noise | |
temp_sample_settings = sample_settings.clone() | |
temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i | |
temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i | |
return latents, temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None, | |
extra_args=noise_extra_args, force_create_noise=True) | |
class FreeInitOptions(IterationOptions): | |
FREEINIT_SAMPLER = "FreeInit [sampler sigma]" | |
FREEINIT_MODEL = "FreeInit [model sigma]" | |
DINKINIT_V1 = "DinkInit_v1" | |
LIST = [FREEINIT_SAMPLER, FREEINIT_MODEL, DINKINIT_V1] | |
def __init__(self, iterations: int, step: int=999, apply_to_1st_iter: bool=False, | |
filter=freeinit.FreeInitFilter.GAUSSIAN, d_s=0.25, d_t=0.25, n=4, init_type=FREEINIT_SAMPLER, | |
iter_batch_offset: int=0, iter_seed_offset: int=1): | |
super().__init__(iterations=iterations, cache_init_noise=True, cache_init_latents=True, | |
iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset) | |
self.apply_to_1st_iter = apply_to_1st_iter | |
self.step = step | |
self.filter = filter | |
self.d_s = d_s | |
self.d_t = d_t | |
self.n = n | |
self.freq_filter = None | |
self.freq_filter2 = None | |
self.need_sampler = True if init_type in [self.FREEINIT_SAMPLER] else False | |
self.init_type = init_type | |
def initialize(self, latents: Tensor): | |
self.freq_filter = freeinit.get_freq_filter(latents.shape, device=latents.device, filter_type=self.filter, | |
n=self.n, d_s=self.d_s, d_t=self.d_t) | |
def preprocess_latents(self, curr_i: int, model: ModelPatcher, latents: Tensor, noise: Tensor, cached_latents: Tensor, cached_noise: Tensor, | |
seed:int, sample_settings: SampleSettings, noise_extra_args: dict, sampler: comfy.samplers.KSampler=None, **kwargs): | |
# if first iter and should not apply, do nothing | |
if curr_i == 0 and not self.apply_to_1st_iter: | |
return latents, noise | |
# otherwise, do FreeInit stuff | |
if self.init_type in [self.FREEINIT_SAMPLER, self.FREEINIT_MODEL]: | |
# NOTE: This should be very close (if not exactly) to how FreeInit is intended to initialize noise the latents. | |
# The trick is that FreeInit is dependent on the behavior of diffuser's DDIMScheduler.add_noise function. | |
# The typical noising method of latents + noise * sigma will NOT work. | |
# 1. apply initial noise with appropriate step sigma, normalized against scale_factor | |
if sampler is not None: | |
sigma = sampler.sigmas[999-self.step].to(latents.device) / (model.model.latent_format.scale_factor) | |
else: | |
sigma = self.get_sigma(model, self.step-1000).to(latents.device) / (model.model.latent_format.scale_factor) | |
alpha_cumprod = 1 / ((sigma * sigma) + 1) | |
sqrt_alpha_prod = alpha_cumprod ** 0.5 | |
sqrt_one_minus_alpha_prod = (1 - alpha_cumprod) ** 0.5 | |
noised_latents = latents * sqrt_alpha_prod + noise * sqrt_one_minus_alpha_prod | |
# 2. create random noise z_rand for high frequency | |
temp_sample_settings = sample_settings.clone() | |
temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i | |
temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i | |
z_rand = temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None, | |
extra_args=noise_extra_args, force_create_noise=True) | |
# 3. noise reinitialization - combines low freq. noise from noised_latents and high freq. noise from z_rand | |
noised_latents = freeinit.freq_mix_3d(x=noised_latents, noise=z_rand.to(dtype=latents.dtype, device=latents.device), LPF=self.freq_filter) | |
return cached_latents, noised_latents | |
elif self.init_type == self.DINKINIT_V1: | |
# NOTE: This was my first attempt at implementing FreeInit; it sorta works due to my alpha_cumprod shenanigans, | |
# but completely by accident. | |
# 1. apply initial noise with appropriate step sigma | |
sigma = self.get_sigma(model, self.step-1000).to(latents.device) | |
alpha_cumprod = 1 / ((sigma * sigma) + 1) #1 / ((sigma * sigma)) # 1 / ((sigma * sigma) + 1) | |
noised_latents = (latents + (cached_noise * sigma)) * alpha_cumprod | |
# 2. create random noise z_rand for high frequency | |
temp_sample_settings = sample_settings.clone() | |
temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i | |
temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i | |
z_rand = temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None, | |
extra_args=noise_extra_args, force_create_noise=True) | |
####z_rand = torch.randn_like(latents, dtype=latents.dtype, device=latents.device) | |
# 3. noise reinitialization - combines low freq. noise from noised_latents and high freq. noise from z_rand | |
noised_latents = freeinit.freq_mix_3d(x=noised_latents, noise=z_rand.to(dtype=latents.dtype, device=latents.device), LPF=self.freq_filter) | |
return cached_latents, noised_latents | |
else: | |
raise ValueError(f"FreeInit init_type '{self.init_type}' is not recognized.") | |
class CustomCFGKeyframe: | |
def __init__(self, cfg_multival: Union[float, Tensor], start_percent=0.0, guarantee_steps=1): | |
self.cfg_multival = cfg_multival | |
# scheduling | |
self.start_percent = float(start_percent) | |
self.start_t = 999999999.9 | |
self.guarantee_steps = guarantee_steps | |
def clone(self): | |
c = CustomCFGKeyframe(cfg_multival=self.cfg_multival, | |
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps) | |
c.start_t = self.start_t | |
return c | |
class CustomCFGKeyframeGroup: | |
def __init__(self): | |
self.keyframes: list[CustomCFGKeyframe] = [] | |
self._current_keyframe: CustomCFGKeyframe = None | |
self._current_used_steps: int = 0 | |
self._current_index: int = 0 | |
def reset(self): | |
self._current_keyframe = None | |
self._current_used_steps = 0 | |
self._current_index = 0 | |
self._set_first_as_current() | |
def add(self, keyframe: CustomCFGKeyframe): | |
# add to end of list, then sort | |
self.keyframes.append(keyframe) | |
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent") | |
self._set_first_as_current() | |
def _set_first_as_current(self): | |
if len(self.keyframes) > 0: | |
self._current_keyframe = self.keyframes[0] | |
else: | |
self._current_keyframe = None | |
def has_index(self, index: int) -> int: | |
return index >=0 and index < len(self.keyframes) | |
def is_empty(self) -> bool: | |
return len(self.keyframes) == 0 | |
def clone(self): | |
cloned = CustomCFGKeyframeGroup() | |
for keyframe in self.keyframes: | |
cloned.keyframes.append(keyframe) | |
cloned._set_first_as_current() | |
return cloned | |
def initialize_timesteps(self, model: BaseModel): | |
for keyframe in self.keyframes: | |
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent) | |
def prepare_current_keyframe(self, t: Tensor): | |
curr_t: float = t[0] | |
prev_index = self._current_index | |
# if met guaranteed steps, look for next keyframe in case need to switch | |
if self._current_used_steps >= self._current_keyframe.guarantee_steps: | |
# if has next index, loop through and see if need t oswitch | |
if self.has_index(self._current_index+1): | |
for i in range(self._current_index+1, len(self.keyframes)): | |
eval_c = self.keyframes[i] | |
# check if start_t is greater or equal to curr_t | |
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling | |
if eval_c.start_t >= curr_t: | |
self._current_index = i | |
self._current_keyframe = eval_c | |
self._current_used_steps = 0 | |
# if guarantee_steps greater than zero, stop searching for other keyframes | |
if self._current_keyframe.guarantee_steps > 0: | |
break | |
# if eval_c is outside the percent range, stop looking further | |
else: break | |
# update steps current context is used | |
self._current_used_steps += 1 | |
def patch_model(self, model: ModelPatcher) -> ModelPatcher: | |
def evolved_custom_cfg(args): | |
cond: Tensor = args["cond"] | |
uncond: Tensor = args["uncond"] | |
# cond scale is based purely off of CustomCFG - cond_scale input in sampler is ignored! | |
cond_scale = self.cfg_multival | |
if isinstance(cond_scale, Tensor): | |
cond_scale = prepare_mask_batch(cond_scale.to(cond.dtype).to(cond.device), cond.shape) | |
cond_scale = extend_to_batch_size(cond_scale, cond.shape[0]) | |
return uncond + (cond - uncond) * cond_scale | |
model = model.clone() | |
model.set_model_sampler_cfg_function(evolved_custom_cfg) | |
return model | |
# properties shadow those of CustomCFGKeyframe | |
def cfg_multival(self): | |
if self._current_keyframe != None: | |
return self._current_keyframe.cfg_multival | |
return None | |