daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
raw
history blame
9.75 kB
from pathlib import Path
import torch
import comfy.sample as comfy_sample
from comfy.model_patcher import ModelPatcher
from .ad_settings import AnimateDiffSettings
from .context import ContextOptions, ContextOptionsGroup, ContextSchedules
from .logger import logger
from .utils_model import BIGMAX, BetaSchedules, get_available_motion_loras, get_available_motion_models, get_motion_lora_path
from .utils_motion import ADKeyframeGroup, ADKeyframe
from .motion_lora import MotionLoraInfo, MotionLoraList
from .model_injection import (InjectionParams, ModelPatcherAndInjector, MotionModelGroup, MotionModelPatcher, create_fresh_motion_module,
load_motion_module_gen1, load_motion_module_gen2, load_motion_lora_as_patches, validate_model_compatibility_gen2)
from .sample_settings import SampleSettings, SeedNoiseGeneration
from .sampling import motion_sample_factory
class UseEvolvedSamplingNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.AUTOSELECT}),
},
"optional": {
"m_models": ("M_MODELS",),
"context_options": ("CONTEXT_OPTIONS",),
"sample_settings": ("SAMPLE_SETTINGS",),
#"beta_schedule_override": ("BETA_SCHEDULE",),
}
}
RETURN_TYPES = ("MODEL",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/β‘‘ Gen2 nodes β‘‘"
FUNCTION = "use_evolved_sampling"
def use_evolved_sampling(self, model: ModelPatcher, beta_schedule: str, m_models: MotionModelGroup=None, context_options: ContextOptionsGroup=None,
sample_settings: SampleSettings=None, beta_schedule_override=None):
if m_models is not None:
m_models = m_models.clone()
# for each motion model, confirm that it is compatible with SD model
for motion_model in m_models.models:
validate_model_compatibility_gen2(model=model, motion_model=motion_model)
# create injection params
model_name_list = [motion_model.model.mm_info.mm_name for motion_model in m_models.models]
model_names = ",".join(model_name_list)
# TODO: check if any apply_v2_properly is set to False
params = InjectionParams(unlimited_area_hack=False, model_name=model_names)
else:
params = InjectionParams()
# apply context options
if context_options:
params.set_context(context_options)
# need to use a ModelPatcher that supports injection of motion modules into unet
model = ModelPatcherAndInjector(model)
model.motion_models = m_models
model.sample_settings = sample_settings if sample_settings is not None else SampleSettings()
model.motion_injection_params = params
if model.sample_settings.custom_cfg is not None:
logger.info("[Sample Settings] custom_cfg is set; will override any KSampler cfg values or patches.")
if model.sample_settings.sigma_schedule is not None:
logger.info("[Sample Settings] sigma_schedule is set; will override beta_schedule.")
model.add_object_patch("model_sampling", model.sample_settings.sigma_schedule.clone().model_sampling)
else:
# save model_sampling from BetaSchedule as object patch
# if autoselect, get suggested beta_schedule from motion model
if beta_schedule == BetaSchedules.AUTOSELECT and not model.motion_models.is_empty():
beta_schedule = model.motion_models[0].model.get_best_beta_schedule(log=True)
new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, model)
if new_model_sampling is not None:
model.add_object_patch("model_sampling", new_model_sampling)
del m_models
return (model,)
class ApplyAnimateDiffModelNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"motion_model": ("MOTION_MODEL_ADE",),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"optional": {
"motion_lora": ("MOTION_LORA",),
"scale_multival": ("MULTIVAL",),
"effect_multival": ("MULTIVAL",),
"ad_keyframes": ("AD_KEYFRAMES",),
"prev_m_models": ("M_MODELS",),
}
}
RETURN_TYPES = ("M_MODELS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/β‘‘ Gen2 nodes β‘‘"
FUNCTION = "apply_motion_model"
def apply_motion_model(self, motion_model: MotionModelPatcher, start_percent: float=0.0, end_percent: float=1.0,
motion_lora: MotionLoraList=None, ad_keyframes: ADKeyframeGroup=None,
scale_multival=None, effect_multival=None,
prev_m_models: MotionModelGroup=None,):
# set up motion models list
if prev_m_models is None:
prev_m_models = MotionModelGroup()
prev_m_models = prev_m_models.clone()
motion_model = motion_model.clone()
# check if internal motion model already present in previous model - create new if so
for prev_model in prev_m_models.models:
if motion_model.model is prev_model.model:
# need to create new internal model based on same state_dict
motion_model = create_fresh_motion_module(motion_model)
# apply motion model to loaded_mm
if motion_lora is not None:
for lora in motion_lora.loras:
load_motion_lora_as_patches(motion_model, lora)
motion_model.scale_multival = scale_multival
motion_model.effect_multival = effect_multival
motion_model.keyframes = ad_keyframes.clone() if ad_keyframes else ADKeyframeGroup()
motion_model.timestep_percent_range = (start_percent, end_percent)
# add to beginning, so that after injection, it will be the earliest of prev_m_models to be run
prev_m_models.add_to_start(mm=motion_model)
return (prev_m_models,)
class ApplyAnimateDiffModelBasicNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"motion_model": ("MOTION_MODEL_ADE",),
},
"optional": {
"motion_lora": ("MOTION_LORA",),
"scale_multival": ("MULTIVAL",),
"effect_multival": ("MULTIVAL",),
"ad_keyframes": ("AD_KEYFRAMES",),
}
}
RETURN_TYPES = ("M_MODELS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/β‘‘ Gen2 nodes β‘‘"
FUNCTION = "apply_motion_model"
def apply_motion_model(self,
motion_model: MotionModelPatcher, motion_lora: MotionLoraList=None,
scale_multival=None, effect_multival=None, ad_keyframes=None):
# just a subset of normal ApplyAnimateDiffModelNode inputs
return ApplyAnimateDiffModelNode.apply_motion_model(self, motion_model, motion_lora=motion_lora,
scale_multival=scale_multival, effect_multival=effect_multival,
ad_keyframes=ad_keyframes)
class LoadAnimateDiffModelNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model_name": (get_available_motion_models(),),
},
"optional": {
"ad_settings": ("AD_SETTINGS",),
}
}
RETURN_TYPES = ("MOTION_MODEL_ADE",)
RETURN_NAMES = ("MOTION_MODEL",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/β‘‘ Gen2 nodes β‘‘"
FUNCTION = "load_motion_model"
def load_motion_model(self, model_name: str, ad_settings: AnimateDiffSettings=None):
# load motion module and motion settings, if included
motion_model = load_motion_module_gen2(model_name=model_name, motion_model_settings=ad_settings)
return (motion_model,)
class ADKeyframeNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}, ),
},
"optional": {
"prev_ad_keyframes": ("AD_KEYFRAMES", ),
"scale_multival": ("MULTIVAL",),
"effect_multival": ("MULTIVAL",),
"inherit_missing": ("BOOLEAN", {"default": True}, ),
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
}
}
RETURN_TYPES = ("AD_KEYFRAMES", )
FUNCTION = "load_keyframe"
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“"
def load_keyframe(self,
start_percent: float, prev_ad_keyframes=None,
scale_multival: [float, torch.Tensor]=None, effect_multival: [float, torch.Tensor]=None,
inherit_missing: bool=True, guarantee_steps: int=1):
if not prev_ad_keyframes:
prev_ad_keyframes = ADKeyframeGroup()
prev_ad_keyframes = prev_ad_keyframes.clone()
keyframe = ADKeyframe(start_percent=start_percent, scale_multival=scale_multival, effect_multival=effect_multival,
inherit_missing=inherit_missing, guarantee_steps=guarantee_steps)
prev_ad_keyframes.add(keyframe)
return (prev_ad_keyframes,)