Spaces:
Running
Running
from PIL import Image, ImageFilter | |
import torch | |
import math | |
from nodes import common_ksampler, VAEEncode, VAEDecode, VAEDecodeTiled | |
from utils import pil_to_tensor, tensor_to_pil, get_crop_region, expand_crop, crop_cond | |
from modules import shared | |
if (not hasattr(Image, 'Resampling')): # For older versions of Pillow | |
Image.Resampling = Image | |
class StableDiffusionProcessing: | |
def __init__(self, init_img, model, positive, negative, vae, seed, steps, cfg, sampler_name, scheduler, denoise, upscale_by, uniform_tile_mode, tiled_decode): | |
# Variables used by the USDU script | |
self.init_images = [init_img] | |
self.image_mask = None | |
self.mask_blur = 0 | |
self.inpaint_full_res_padding = 0 | |
self.width = init_img.width | |
self.height = init_img.height | |
# ComfyUI Sampler inputs | |
self.model = model | |
self.positive = positive | |
self.negative = negative | |
self.vae = vae | |
self.seed = seed | |
self.steps = steps | |
self.cfg = cfg | |
self.sampler_name = sampler_name | |
self.scheduler = scheduler | |
self.denoise = denoise | |
# Variables used only by this script | |
self.init_size = init_img.width, init_img.height | |
self.upscale_by = upscale_by | |
self.uniform_tile_mode = uniform_tile_mode | |
self.tiled_decode = tiled_decode | |
self.vae_decoder = VAEDecode() | |
self.vae_encoder = VAEEncode() | |
self.vae_decoder_tiled = VAEDecodeTiled() | |
# Other required A1111 variables for the USDU script that is currently unused in this script | |
self.extra_generation_params = {} | |
class Processed: | |
def __init__(self, p: StableDiffusionProcessing, images: list, seed: int, info: str): | |
self.images = images | |
self.seed = seed | |
self.info = info | |
def infotext(self, p: StableDiffusionProcessing, index): | |
return None | |
def fix_seed(p: StableDiffusionProcessing): | |
pass | |
def process_images(p: StableDiffusionProcessing) -> Processed: | |
# Where the main image generation happens in A1111 | |
# Setup | |
image_mask = p.image_mask.convert('L') | |
init_image = p.init_images[0] | |
# Locate the white region of the mask outlining the tile and add padding | |
crop_region = get_crop_region(image_mask, p.inpaint_full_res_padding) | |
if p.uniform_tile_mode: | |
# Expand the crop region to match the processing size ratio and then resize it to the processing size | |
x1, y1, x2, y2 = crop_region | |
crop_width = x2 - x1 | |
crop_height = y2 - y1 | |
crop_ratio = crop_width / crop_height | |
p_ratio = p.width / p.height | |
if crop_ratio > p_ratio: | |
target_width = crop_width | |
target_height = round(crop_width / p_ratio) | |
else: | |
target_width = round(crop_height * p_ratio) | |
target_height = crop_height | |
crop_region, _ = expand_crop(crop_region, image_mask.width, image_mask.height, target_width, target_height) | |
tile_size = p.width, p.height | |
else: | |
# Uses the minimal size that can fit the mask, minimizes tile size but may lead to image sizes that the model is not trained on | |
x1, y1, x2, y2 = crop_region | |
crop_width = x2 - x1 | |
crop_height = y2 - y1 | |
target_width = math.ceil(crop_width / 8) * 8 | |
target_height = math.ceil(crop_height / 8) * 8 | |
crop_region, tile_size = expand_crop(crop_region, image_mask.width, | |
image_mask.height, target_width, target_height) | |
# Blur the mask | |
if p.mask_blur > 0: | |
image_mask = image_mask.filter(ImageFilter.GaussianBlur(p.mask_blur)) | |
# Crop the images to get the tiles that will be used for generation | |
tiles = [img.crop(crop_region) for img in shared.batch] | |
# Assume the same size for all images in the batch | |
initial_tile_size = tiles[0].size | |
# Resize if necessary | |
for i, tile in enumerate(tiles): | |
if tile.size != tile_size: | |
tiles[i] = tile.resize(tile_size, Image.Resampling.LANCZOS) | |
# Crop conditioning | |
positive_cropped = crop_cond(p.positive, crop_region, p.init_size, init_image.size, tile_size) | |
negative_cropped = crop_cond(p.negative, crop_region, p.init_size, init_image.size, tile_size) | |
# Encode the image | |
batched_tiles = torch.cat([pil_to_tensor(tile) for tile in tiles], dim=0) | |
(latent,) = p.vae_encoder.encode(p.vae, batched_tiles) | |
# Generate samples | |
(samples,) = common_ksampler(p.model, p.seed, p.steps, p.cfg, p.sampler_name, | |
p.scheduler, positive_cropped, negative_cropped, latent, denoise=p.denoise) | |
# Decode the sample | |
if not p.tiled_decode: | |
(decoded,) = p.vae_decoder.decode(p.vae, samples) | |
else: | |
print("[USDU] Using tiled decode") | |
(decoded,) = p.vae_decoder_tiled.decode(p.vae, samples, 512) # Default tile size is 512 | |
# Convert the sample to a PIL image | |
tiles_sampled = [tensor_to_pil(decoded, i) for i in range(len(decoded))] | |
for i, tile_sampled in enumerate(tiles_sampled): | |
init_image = shared.batch[i] | |
# Resize back to the original size | |
if tile_sampled.size != initial_tile_size: | |
tile_sampled = tile_sampled.resize(initial_tile_size, Image.Resampling.LANCZOS) | |
# Put the tile into position | |
image_tile_only = Image.new('RGBA', init_image.size) | |
image_tile_only.paste(tile_sampled, crop_region[:2]) | |
# Add the mask as an alpha channel | |
# Must make a copy due to the possibility of an edge becoming black | |
temp = image_tile_only.copy() | |
temp.putalpha(image_mask) | |
image_tile_only.paste(temp, image_tile_only) | |
# Add back the tile to the initial image according to the mask in the alpha channel | |
result = init_image.convert('RGBA') | |
result.alpha_composite(image_tile_only) | |
# Convert back to RGB | |
result = result.convert('RGB') | |
shared.batch[i] = result | |
processed = Processed(p, [shared.batch[0]], p.seed, None) | |
return processed | |