Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,6 @@
|
|
| 1 |
-
import time
|
| 2 |
-
print('1')
|
| 3 |
-
print(time.time())
|
| 4 |
-
|
| 5 |
-
#__import__('pysqlite3')
|
| 6 |
-
#import sys
|
| 7 |
-
#sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
| 8 |
-
|
| 9 |
import os
|
| 10 |
import torch
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
#os.system('wget -q https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu118-cp310-cp310-linux_x86_64.whl')
|
| 15 |
-
#os.system('pip install -qqq auto_gptq-0.4.2+cu118-cp310-cp310-linux_x86_64.whl --progress-bar off')
|
| 16 |
-
|
| 17 |
-
#print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 18 |
-
os.system('nvidia-smi')
|
| 19 |
-
|
| 20 |
import uuid
|
| 21 |
-
#import replicate
|
| 22 |
import requests
|
| 23 |
import streamlit as st
|
| 24 |
from streamlit.logger import get_logger
|
|
@@ -28,7 +10,6 @@ from langchain.chains import RetrievalQA
|
|
| 28 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
| 29 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 30 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 31 |
-
from langchain.vectorstores import Chroma
|
| 32 |
from pdf2image import convert_from_path
|
| 33 |
from transformers import AutoTokenizer, TextStreamer, pipeline
|
| 34 |
from langchain.memory import ConversationBufferMemory
|
|
@@ -36,7 +17,6 @@ from gtts import gTTS
|
|
| 36 |
from io import BytesIO
|
| 37 |
from langchain.chains import ConversationalRetrievalChain
|
| 38 |
import streamlit.components.v1 as components
|
| 39 |
-
#from sentence_transformers import SentenceTransformer
|
| 40 |
from langchain.document_loaders import UnstructuredMarkdownLoader
|
| 41 |
from langchain.vectorstores.utils import filter_complex_metadata
|
| 42 |
import fitz
|
|
@@ -50,13 +30,6 @@ logger = get_logger(__name__)
|
|
| 50 |
st.set_page_config(page_title="Document QA by Dono", page_icon="🤖", )
|
| 51 |
st.session_state.disabled = False
|
| 52 |
st.title("Document QA by Dono")
|
| 53 |
-
#st.markdown(f"""<style>
|
| 54 |
-
# .stApp {{background-image: url("https://media.istockphoto.com/id/450481545/photo/glowing-lightbulb-against-black-background.webp?b=1&s=170667a&w=0&k=20&c=fJ91chWN1UkoKTNUvwgiQwpM80DlRpVC-WlJH_78OvE=");
|
| 55 |
-
# background-attachment: fixed;
|
| 56 |
-
# background-size: cover}}
|
| 57 |
-
# </style>
|
| 58 |
-
# """, unsafe_allow_html=True)
|
| 59 |
-
|
| 60 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 61 |
|
| 62 |
|
|
@@ -64,30 +37,14 @@ DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
| 64 |
def load_data():
|
| 65 |
loader = PyPDFDirectoryLoader("/home/user/app/pdfs/")
|
| 66 |
docs = loader.load()
|
| 67 |
-
print(len(docs))
|
| 68 |
return docs
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
@st.cache_resource
|
| 73 |
def load_model(_docs):
|
| 74 |
-
#embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large",model_kwargs={"device":DEVICE})
|
| 75 |
-
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={"device":DEVICE})
|
| 76 |
embeddings = HuggingFaceInstructEmbeddings(model_name="/home/user/app/all-MiniLM-L6-v2/",model_kwargs={"device":DEVICE})
|
| 77 |
-
print(DEVICE)
|
| 78 |
-
|
| 79 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
|
| 80 |
texts = text_splitter.split_documents(docs)
|
| 81 |
-
|
| 82 |
-
print('embedding done')
|
| 83 |
-
|
| 84 |
-
#db = Chroma.from_documents(texts, embeddings, persist_directory="/home/user/app/db")
|
| 85 |
db = FAISS.from_documents(texts, embeddings)
|
| 86 |
-
|
| 87 |
-
print('db done')
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
#model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ"
|
| 91 |
model_name_or_path = "/home/user/app/Llama-2-13B-chat-GPTQ/"
|
| 92 |
model_basename = "model"
|
| 93 |
|
|
@@ -104,20 +61,18 @@ def load_model(_docs):
|
|
| 104 |
quantize_config=None,
|
| 105 |
)
|
| 106 |
|
| 107 |
-
print('model done')
|
| 108 |
-
|
| 109 |
DEFAULT_SYSTEM_PROMPT = """
|
| 110 |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
|
| 111 |
Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.
|
| 112 |
Please ensure that your responses are socially unbiased and positive in nature.
|
| 113 |
Always provide the citation for the answer from the text.
|
| 114 |
Try to include any section or subsection present in the text responsible for the answer.
|
| 115 |
-
Provide reference. Provide page number, section, sub section etc
|
| 116 |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
|
| 117 |
Given a government document that outlines rules and regulations for a specific industry or sector, use your language model to answer questions about the rules and their applicability over time.
|
| 118 |
The document may include provisions that take effect at different times, such as immediately upon publication, after a grace period, or on a specific date in the future.
|
| 119 |
Your task is to identify the relevant rules and determine when they go into effect, taking into account any dependencies or exceptions that may apply.
|
| 120 |
-
The current date is 14 September, 2023. Try to extract information which is closer to this date
|
| 121 |
Take a deep breath and work on this problem step-by-step.
|
| 122 |
""".strip()
|
| 123 |
|
|
@@ -126,52 +81,45 @@ def load_model(_docs):
|
|
| 126 |
return f"""[INST] <<SYS>>{system_prompt}<</SYS>>{prompt} [/INST]""".strip()
|
| 127 |
|
| 128 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.2})
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
| 139 |
template = generate_prompt("""{context} Question: {question} """,system_prompt=SYSTEM_PROMPT,) #Enter memory here!
|
| 140 |
-
|
| 141 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"]) #Add history here
|
| 142 |
-
|
| 143 |
qa_chain = RetrievalQA.from_chain_type(
|
| 144 |
llm=llm,
|
| 145 |
chain_type="stuff",
|
| 146 |
retriever=db.as_retriever(search_kwargs={"k": 5}),
|
| 147 |
return_source_documents=True,
|
| 148 |
chain_type_kwargs={"prompt": prompt,
|
| 149 |
-
"verbose": False
|
| 150 |
-
#"memory": ConversationBufferMemory(
|
| 151 |
-
#memory_key="history",
|
| 152 |
-
#input_key="question",
|
| 153 |
-
#return_messages=True)
|
| 154 |
-
},)
|
| 155 |
|
| 156 |
print('load done')
|
| 157 |
return qa_chain
|
| 158 |
|
| 159 |
|
| 160 |
-
|
| 161 |
-
#flag = 0
|
| 162 |
-
#if uploaded_file is not None:
|
| 163 |
-
# flag = 1
|
| 164 |
-
|
| 165 |
-
model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ"
|
| 166 |
model_basename = "model"
|
| 167 |
|
| 168 |
st.session_state["llm_model"] = model_name_or_path
|
| 169 |
|
| 170 |
-
|
| 171 |
if "messages" not in st.session_state:
|
| 172 |
st.session_state.messages = []
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
| 175 |
|
| 176 |
for message in st.session_state.messages:
|
| 177 |
with st.chat_message(message["role"]):
|
|
@@ -181,7 +129,7 @@ for message in st.session_state.messages:
|
|
| 181 |
def on_select():
|
| 182 |
st.session_state.disabled = True
|
| 183 |
|
| 184 |
-
|
| 185 |
def get_message_history():
|
| 186 |
for message in st.session_state.messages:
|
| 187 |
role, content = message["role"], message["content"]
|
|
@@ -191,11 +139,6 @@ def get_message_history():
|
|
| 191 |
docs = load_data()
|
| 192 |
qa_chain = load_model(docs)
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
print('2')
|
| 198 |
-
print(time.time())
|
| 199 |
if prompt := st.chat_input("How can I help you today?"):
|
| 200 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 201 |
with st.chat_message("user"):
|
|
@@ -204,144 +147,51 @@ if prompt := st.chat_input("How can I help you today?"):
|
|
| 204 |
message_placeholder = st.empty()
|
| 205 |
full_response = ""
|
| 206 |
message_history = "\n".join(list(get_message_history())[-3:])
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
# disabled=not uploaded_file,)
|
| 210 |
-
print('3')
|
| 211 |
-
print(time.time())
|
| 212 |
-
result = qa_chain(prompt)
|
| 213 |
-
print('4')
|
| 214 |
-
print(time.time())
|
| 215 |
-
|
| 216 |
output = [result['result']]
|
| 217 |
|
| 218 |
-
# for item in output:
|
| 219 |
-
# full_response += item
|
| 220 |
-
# message_placeholder.markdown(full_response + "▌")
|
| 221 |
-
# message_placeholder.markdown(full_response)
|
| 222 |
-
#st.write(repr(result['source_documents'][0].metadata['page']))
|
| 223 |
-
#st.write(repr(result['source_documents'][0]))
|
| 224 |
-
|
| 225 |
-
print('5')
|
| 226 |
-
print(time.time())
|
| 227 |
-
|
| 228 |
def generate_pdf():
|
|
|
|
| 229 |
page_number = int(result['source_documents'][0].metadata['page'])
|
| 230 |
doc = fitz.open(str(result['source_documents'][0].metadata['source']))
|
| 231 |
-
|
| 232 |
text = str(result['source_documents'][0].page_content)
|
| 233 |
if text != '':
|
| 234 |
for page in doc:
|
| 235 |
-
### SEARCH
|
| 236 |
text_instances = page.search_for(text)
|
| 237 |
-
|
| 238 |
-
### HIGHLIGHT
|
| 239 |
for inst in text_instances:
|
| 240 |
highlight = page.add_highlight_annot(inst)
|
| 241 |
highlight.update()
|
| 242 |
-
|
| 243 |
-
### OUTPUT
|
| 244 |
doc.save("/home/user/app/pdf2image/output.pdf", garbage=4, deflate=True, clean=True)
|
| 245 |
-
|
| 246 |
-
# pdf_to_open = repr(result['source_documents'][0].metadata['source'])
|
| 247 |
-
|
| 248 |
def pdf_page_to_image(pdf_file, page_number, output_image):
|
| 249 |
-
# Open the PDF file
|
| 250 |
pdf_document = fitz.open(pdf_file)
|
| 251 |
-
|
| 252 |
-
# Get the specific page
|
| 253 |
page = pdf_document[page_number]
|
| 254 |
-
|
| 255 |
-
# Define the image DPI (dots per inch)
|
| 256 |
dpi = 300 # You can adjust this as needed
|
| 257 |
-
|
| 258 |
-
# Convert the page to an image
|
| 259 |
pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100))
|
| 260 |
-
|
| 261 |
-
# Save the image as a PNG file
|
| 262 |
pix.save(output_image, "png")
|
| 263 |
-
|
| 264 |
-
# Close the PDF file
|
| 265 |
pdf_document.close()
|
| 266 |
-
|
| 267 |
-
|
| 268 |
pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png')
|
| 269 |
-
|
| 270 |
image = Image.open('/home/user/app/pdf2image/output.png')
|
| 271 |
-
st.
|
| 272 |
st.session_state.image_displayed = True
|
| 273 |
|
| 274 |
def generate_audio():
|
| 275 |
sound_file = BytesIO()
|
| 276 |
tts = gTTS(result['result'], lang='en')
|
| 277 |
tts.write_to_fp(sound_file)
|
| 278 |
-
st.
|
| 279 |
st.session_state.sound_played = True
|
| 280 |
|
| 281 |
|
| 282 |
-
#st.button(':speaker:', type='primary',on_click=generate_audio)
|
| 283 |
-
#st.button('Reference',type='primary',on_click=generate_pdf)
|
| 284 |
-
|
| 285 |
-
# Create placeholders for output
|
| 286 |
-
image_output = st.empty()
|
| 287 |
-
sound_output = st.empty()
|
| 288 |
-
|
| 289 |
-
# Create a button to display the image
|
| 290 |
-
# if st.button("Reference"):
|
| 291 |
-
# image_output.clear()
|
| 292 |
-
# generate_pdf()
|
| 293 |
-
|
| 294 |
-
# # Create a button to play the sound
|
| 295 |
-
# if st.button(":speaker:"):
|
| 296 |
-
# sound_output.clear()
|
| 297 |
-
# generate_audio()
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
# on_audio = st.checkbox(':speaker:', key="speaker")
|
| 301 |
-
# on_ref = st.checkbox('Reference', key="reference")
|
| 302 |
-
# if on_audio:
|
| 303 |
-
# generate_audio()
|
| 304 |
-
|
| 305 |
-
# if on_ref:
|
| 306 |
-
# generate_pdf()
|
| 307 |
-
|
| 308 |
-
# Initialize session state variables
|
| 309 |
-
if "image_displayed" not in st.session_state:
|
| 310 |
-
st.session_state.image_displayed = False
|
| 311 |
-
if "sound_played" not in st.session_state:
|
| 312 |
-
st.session_state.sound_played = False
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
# Create the two buttons
|
| 317 |
-
#st.button("Display Image", on_click=generate_pdf)
|
| 318 |
-
#st.button("Play Sound", on_click=generate_audio)
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
# # Check if the image has been displayed and display it if it has not
|
| 323 |
-
# if not st.session_state.image_displayed:
|
| 324 |
-
# generate_pdf()
|
| 325 |
-
|
| 326 |
-
# # Check if the sound has been played and play it if it has not
|
| 327 |
-
# if not st.session_state.sound_played:
|
| 328 |
-
# generate_audio()
|
| 329 |
-
|
| 330 |
-
|
| 331 |
for item in output:
|
| 332 |
full_response += item
|
| 333 |
message_placeholder.markdown(full_response + "▌")
|
| 334 |
message_placeholder.markdown(full_response)
|
| 335 |
-
|
| 336 |
-
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
| 337 |
|
| 338 |
-
if st.
|
| 339 |
generate_pdf()
|
| 340 |
|
| 341 |
-
|
| 342 |
-
if st.button("Play Sound"):
|
| 343 |
-
generate_audio()
|
| 344 |
-
|
| 345 |
-
|
| 346 |
|
| 347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import uuid
|
|
|
|
| 4 |
import requests
|
| 5 |
import streamlit as st
|
| 6 |
from streamlit.logger import get_logger
|
|
|
|
| 10 |
from langchain.document_loaders import PyPDFDirectoryLoader
|
| 11 |
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 13 |
from pdf2image import convert_from_path
|
| 14 |
from transformers import AutoTokenizer, TextStreamer, pipeline
|
| 15 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
| 17 |
from io import BytesIO
|
| 18 |
from langchain.chains import ConversationalRetrievalChain
|
| 19 |
import streamlit.components.v1 as components
|
|
|
|
| 20 |
from langchain.document_loaders import UnstructuredMarkdownLoader
|
| 21 |
from langchain.vectorstores.utils import filter_complex_metadata
|
| 22 |
import fitz
|
|
|
|
| 30 |
st.set_page_config(page_title="Document QA by Dono", page_icon="🤖", )
|
| 31 |
st.session_state.disabled = False
|
| 32 |
st.title("Document QA by Dono")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 34 |
|
| 35 |
|
|
|
|
| 37 |
def load_data():
|
| 38 |
loader = PyPDFDirectoryLoader("/home/user/app/pdfs/")
|
| 39 |
docs = loader.load()
|
|
|
|
| 40 |
return docs
|
| 41 |
|
|
|
|
|
|
|
| 42 |
@st.cache_resource
|
| 43 |
def load_model(_docs):
|
|
|
|
|
|
|
| 44 |
embeddings = HuggingFaceInstructEmbeddings(model_name="/home/user/app/all-MiniLM-L6-v2/",model_kwargs={"device":DEVICE})
|
|
|
|
|
|
|
| 45 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=256)
|
| 46 |
texts = text_splitter.split_documents(docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
db = FAISS.from_documents(texts, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
model_name_or_path = "/home/user/app/Llama-2-13B-chat-GPTQ/"
|
| 49 |
model_basename = "model"
|
| 50 |
|
|
|
|
| 61 |
quantize_config=None,
|
| 62 |
)
|
| 63 |
|
|
|
|
|
|
|
| 64 |
DEFAULT_SYSTEM_PROMPT = """
|
| 65 |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
|
| 66 |
Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.
|
| 67 |
Please ensure that your responses are socially unbiased and positive in nature.
|
| 68 |
Always provide the citation for the answer from the text.
|
| 69 |
Try to include any section or subsection present in the text responsible for the answer.
|
| 70 |
+
Provide reference. Provide page number, section, sub section etc.
|
| 71 |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
|
| 72 |
Given a government document that outlines rules and regulations for a specific industry or sector, use your language model to answer questions about the rules and their applicability over time.
|
| 73 |
The document may include provisions that take effect at different times, such as immediately upon publication, after a grace period, or on a specific date in the future.
|
| 74 |
Your task is to identify the relevant rules and determine when they go into effect, taking into account any dependencies or exceptions that may apply.
|
| 75 |
+
The current date is 14 September, 2023. Try to extract information which is closer to this date.
|
| 76 |
Take a deep breath and work on this problem step-by-step.
|
| 77 |
""".strip()
|
| 78 |
|
|
|
|
| 81 |
return f"""[INST] <<SYS>>{system_prompt}<</SYS>>{prompt} [/INST]""".strip()
|
| 82 |
|
| 83 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 84 |
+
text_pipeline = pipeline("text-generation",
|
| 85 |
+
model=model,
|
| 86 |
+
tokenizer=tokenizer,
|
| 87 |
+
max_new_tokens=1024,
|
| 88 |
+
temperature=0.2,
|
| 89 |
+
top_p=0.95,
|
| 90 |
+
repetition_penalty=1.15,
|
| 91 |
+
streamer=streamer,)
|
| 92 |
llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0.2})
|
| 93 |
|
| 94 |
+
SYSTEM_PROMPT = ("Use the following pieces of context to answer the question at the end. "
|
| 95 |
+
"If you don't know the answer, just say that you don't know, "
|
| 96 |
+
"don't try to make up an answer.")
|
| 97 |
|
| 98 |
template = generate_prompt("""{context} Question: {question} """,system_prompt=SYSTEM_PROMPT,) #Enter memory here!
|
|
|
|
| 99 |
prompt = PromptTemplate(template=template, input_variables=["context", "question"]) #Add history here
|
|
|
|
| 100 |
qa_chain = RetrievalQA.from_chain_type(
|
| 101 |
llm=llm,
|
| 102 |
chain_type="stuff",
|
| 103 |
retriever=db.as_retriever(search_kwargs={"k": 5}),
|
| 104 |
return_source_documents=True,
|
| 105 |
chain_type_kwargs={"prompt": prompt,
|
| 106 |
+
"verbose": False})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
print('load done')
|
| 109 |
return qa_chain
|
| 110 |
|
| 111 |
|
| 112 |
+
model_name_or_path = "Llama-2-13B-chat-GPTQ"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
model_basename = "model"
|
| 114 |
|
| 115 |
st.session_state["llm_model"] = model_name_or_path
|
| 116 |
|
|
|
|
| 117 |
if "messages" not in st.session_state:
|
| 118 |
st.session_state.messages = []
|
| 119 |
+
if "image_displayed" not in st.session_state:
|
| 120 |
+
st.session_state.image_displayed = False
|
| 121 |
+
if "sound_played" not in st.session_state:
|
| 122 |
+
st.session_state.sound_played = False
|
| 123 |
|
| 124 |
for message in st.session_state.messages:
|
| 125 |
with st.chat_message(message["role"]):
|
|
|
|
| 129 |
def on_select():
|
| 130 |
st.session_state.disabled = True
|
| 131 |
|
| 132 |
+
|
| 133 |
def get_message_history():
|
| 134 |
for message in st.session_state.messages:
|
| 135 |
role, content = message["role"], message["content"]
|
|
|
|
| 139 |
docs = load_data()
|
| 140 |
qa_chain = load_model(docs)
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
if prompt := st.chat_input("How can I help you today?"):
|
| 143 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 144 |
with st.chat_message("user"):
|
|
|
|
| 147 |
message_placeholder = st.empty()
|
| 148 |
full_response = ""
|
| 149 |
message_history = "\n".join(list(get_message_history())[-3:])
|
| 150 |
+
question = st.text_input("Ask your question", placeholder="Try to include context in your question")
|
| 151 |
+
result = qa_chain(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
output = [result['result']]
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
def generate_pdf():
|
| 155 |
+
generate_audio()
|
| 156 |
page_number = int(result['source_documents'][0].metadata['page'])
|
| 157 |
doc = fitz.open(str(result['source_documents'][0].metadata['source']))
|
|
|
|
| 158 |
text = str(result['source_documents'][0].page_content)
|
| 159 |
if text != '':
|
| 160 |
for page in doc:
|
|
|
|
| 161 |
text_instances = page.search_for(text)
|
|
|
|
|
|
|
| 162 |
for inst in text_instances:
|
| 163 |
highlight = page.add_highlight_annot(inst)
|
| 164 |
highlight.update()
|
|
|
|
|
|
|
| 165 |
doc.save("/home/user/app/pdf2image/output.pdf", garbage=4, deflate=True, clean=True)
|
| 166 |
+
|
|
|
|
|
|
|
| 167 |
def pdf_page_to_image(pdf_file, page_number, output_image):
|
|
|
|
| 168 |
pdf_document = fitz.open(pdf_file)
|
|
|
|
|
|
|
| 169 |
page = pdf_document[page_number]
|
|
|
|
|
|
|
| 170 |
dpi = 300 # You can adjust this as needed
|
|
|
|
|
|
|
| 171 |
pix = page.get_pixmap(matrix=fitz.Matrix(dpi / 100, dpi / 100))
|
|
|
|
|
|
|
| 172 |
pix.save(output_image, "png")
|
|
|
|
|
|
|
| 173 |
pdf_document.close()
|
|
|
|
|
|
|
| 174 |
pdf_page_to_image('/home/user/app/pdf2image/output.pdf', page_number, '/home/user/app/pdf2image/output.png')
|
|
|
|
| 175 |
image = Image.open('/home/user/app/pdf2image/output.png')
|
| 176 |
+
st.image(image)
|
| 177 |
st.session_state.image_displayed = True
|
| 178 |
|
| 179 |
def generate_audio():
|
| 180 |
sound_file = BytesIO()
|
| 181 |
tts = gTTS(result['result'], lang='en')
|
| 182 |
tts.write_to_fp(sound_file)
|
| 183 |
+
st.audio(sound_file)
|
| 184 |
st.session_state.sound_played = True
|
| 185 |
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
for item in output:
|
| 188 |
full_response += item
|
| 189 |
message_placeholder.markdown(full_response + "▌")
|
| 190 |
message_placeholder.markdown(full_response)
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
if st.toggle("Reference and Sound"):
|
| 193 |
generate_pdf()
|
| 194 |
|
| 195 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
|