vishwask commited on
Commit
c64d65e
·
verified ·
1 Parent(s): f2123a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -2
app.py CHANGED
@@ -14,9 +14,148 @@ from langchain.llms import HuggingFaceHub
14
  from pathlib import Path
15
  import chromadb
16
 
17
- from transformers import AutoTokenzier
18
  import transformers
19
  import torch
20
- import tqdm
21
  import accelerate
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  from pathlib import Path
15
  import chromadb
16
 
17
+ from transformers import AutoTokenizer
18
  import transformers
19
  import torch
20
+ import tqdm
21
  import accelerate
22
 
23
+ def load_doc(list_file_path, chunk_size, chunk_overlap):
24
+ # Processing for one document only
25
+ # loader = PyPDFLoader(file_path)
26
+ # pages = loader.load()
27
+ loaders = [PyPDFLoader(x) for x in list_file_path]
28
+ pages = []
29
+ for loader in loaders:
30
+ pages.extend(loader.load())
31
+ # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
32
+ text_splitter = RecursiveCharacterTextSplitter(
33
+ chunk_size = chunk_size,
34
+ chunk_overlap = chunk_overlap)
35
+ doc_splits = text_splitter.split_documents(pages)
36
+ return doc_splits
37
+
38
+
39
+ # Create vector database
40
+ def create_db(splits, collection_name):
41
+ embedding = HuggingFaceEmbeddings()
42
+ new_client = chromadb.EphemeralClient()
43
+ vectordb = Chroma.from_documents(
44
+ documents=splits,
45
+ embedding=embedding,
46
+ client=new_client,
47
+ collection_name=collection_name,
48
+ # persist_directory=default_persist_directory
49
+ )
50
+ return vectordb
51
+
52
+ # Load vector database
53
+ def load_db():
54
+ embedding = HuggingFaceEmbeddings()
55
+ vectordb = Chroma(
56
+ # persist_directory=default_persist_directory,
57
+ embedding_function=embedding)
58
+ return vectordb
59
+
60
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
61
+ progress(0.1, desc="Initializing HF tokenizer...")
62
+
63
+ # HuggingFaceHub uses HF inference endpoints
64
+ progress(0.5, desc="Initializing HF Hub...")
65
+ # Use of trust_remote_code as model_kwargs
66
+ # Warning: langchain issue
67
+ # URL: https://github.com/langchain-ai/langchain/issues/6080
68
+
69
+ llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1"
70
+ llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True})
71
+ progress(0.75, desc="Defining buffer memory...")
72
+
73
+ memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True )
74
+
75
+ # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
76
+ retriever=vector_db.as_retriever()
77
+
78
+ progress(0.8, desc="Defining retrieval chain...")
79
+
80
+ qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff", memory=memory,return_source_documents=True,verbose=False,)
81
+ progress(0.9, desc="Done!")
82
+ return qa_chain
83
+
84
+ # Initialize database
85
+ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
86
+
87
+ # Create list of documents (when valid)
88
+ list_file_path = [x.name for x in list_file_obj if x is not None]
89
+
90
+ # Create collection_name for vector database
91
+ progress(0.1, desc="Creating collection name...")
92
+ collection_name = Path(list_file_path[0]).stem
93
+
94
+ # Fix potential issues from naming convention
95
+ ## Remove space
96
+ collection_name = collection_name.replace(" ","-")
97
+ ## Limit lenght to 50 characters
98
+ collection_name = collection_name[:50]
99
+
100
+ ## Enforce start and end as alphanumeric character
101
+ if not collection_name[0].isalnum():
102
+ collection_name[0] = 'A'
103
+ if not collection_name[-1].isalnum():
104
+ collection_name[-1] = 'Z'
105
+
106
+ # print('list_file_path: ', list_file_path)
107
+ print('Collection name: ', collection_name)
108
+ progress(0.25, desc="Loading document...")
109
+
110
+ # Load document and create splits
111
+ doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
112
+
113
+ # Create or load vector database
114
+ progress(0.5, desc="Generating vector database...")
115
+
116
+ # global vector_db
117
+ vector_db = create_db(doc_splits, collection_name)
118
+ progress(0.9, desc="Done!")
119
+ return vector_db, collection_name, "Complete!"
120
+
121
+
122
+
123
+ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
124
+ llm_name = list_llm[llm_option]
125
+ print("llm_name: ",llm_name)
126
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
127
+ return qa_chain, "Complete!"
128
+
129
+ def format_chat_history(message, chat_history):
130
+ formatted_chat_history = []
131
+ for user_message, bot_message in chat_history:
132
+ formatted_chat_history.append(f"User: {user_message}")
133
+ formatted_chat_history.append(f"Assistant: {bot_message}")
134
+ return formatted_chat_history
135
+
136
+
137
+ def conversation(qa_chain, message, history):
138
+ formatted_chat_history = format_chat_history(message, history)
139
+ #print("formatted_chat_history",formatted_chat_history)
140
+
141
+ # Generate response using QA chain
142
+ response = qa_chain({"question": message, "chat_history": formatted_chat_history})
143
+ response_answer = response["answer"]
144
+ if response_answer.find("Helpful Answer:") != -1:
145
+ response_answer = response_answer.split("Helpful Answer:")[-1]
146
+ response_sources = response["source_documents"]
147
+ response_source1 = response_sources[0].page_content.strip()
148
+ response_source2 = response_sources[1].page_content.strip()
149
+ response_source3 = response_sources[2].page_content.strip()
150
+ # Langchain sources are zero-based
151
+ response_source1_page = response_sources[0].metadata["page"] + 1
152
+ response_source2_page = response_sources[1].metadata["page"] + 1
153
+ response_source3_page = response_sources[2].metadata["page"] + 1
154
+ # print ('chat response: ', response_answer)
155
+ # print('DB source', response_sources)
156
+
157
+ # Append user message and response to chat history
158
+ new_history = history + [(message, response_answer)]
159
+ # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
160
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
161
+