Update app.py
Browse files
app.py
CHANGED
@@ -14,9 +14,148 @@ from langchain.llms import HuggingFaceHub
|
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
|
17 |
-
from transformers import
|
18 |
import transformers
|
19 |
import torch
|
20 |
-
import tqdm
|
21 |
import accelerate
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
|
17 |
+
from transformers import AutoTokenizer
|
18 |
import transformers
|
19 |
import torch
|
20 |
+
import tqdm
|
21 |
import accelerate
|
22 |
|
23 |
+
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
24 |
+
# Processing for one document only
|
25 |
+
# loader = PyPDFLoader(file_path)
|
26 |
+
# pages = loader.load()
|
27 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
28 |
+
pages = []
|
29 |
+
for loader in loaders:
|
30 |
+
pages.extend(loader.load())
|
31 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
32 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
33 |
+
chunk_size = chunk_size,
|
34 |
+
chunk_overlap = chunk_overlap)
|
35 |
+
doc_splits = text_splitter.split_documents(pages)
|
36 |
+
return doc_splits
|
37 |
+
|
38 |
+
|
39 |
+
# Create vector database
|
40 |
+
def create_db(splits, collection_name):
|
41 |
+
embedding = HuggingFaceEmbeddings()
|
42 |
+
new_client = chromadb.EphemeralClient()
|
43 |
+
vectordb = Chroma.from_documents(
|
44 |
+
documents=splits,
|
45 |
+
embedding=embedding,
|
46 |
+
client=new_client,
|
47 |
+
collection_name=collection_name,
|
48 |
+
# persist_directory=default_persist_directory
|
49 |
+
)
|
50 |
+
return vectordb
|
51 |
+
|
52 |
+
# Load vector database
|
53 |
+
def load_db():
|
54 |
+
embedding = HuggingFaceEmbeddings()
|
55 |
+
vectordb = Chroma(
|
56 |
+
# persist_directory=default_persist_directory,
|
57 |
+
embedding_function=embedding)
|
58 |
+
return vectordb
|
59 |
+
|
60 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
61 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
62 |
+
|
63 |
+
# HuggingFaceHub uses HF inference endpoints
|
64 |
+
progress(0.5, desc="Initializing HF Hub...")
|
65 |
+
# Use of trust_remote_code as model_kwargs
|
66 |
+
# Warning: langchain issue
|
67 |
+
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
68 |
+
|
69 |
+
llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
70 |
+
llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True})
|
71 |
+
progress(0.75, desc="Defining buffer memory...")
|
72 |
+
|
73 |
+
memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True )
|
74 |
+
|
75 |
+
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
76 |
+
retriever=vector_db.as_retriever()
|
77 |
+
|
78 |
+
progress(0.8, desc="Defining retrieval chain...")
|
79 |
+
|
80 |
+
qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff", memory=memory,return_source_documents=True,verbose=False,)
|
81 |
+
progress(0.9, desc="Done!")
|
82 |
+
return qa_chain
|
83 |
+
|
84 |
+
# Initialize database
|
85 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
86 |
+
|
87 |
+
# Create list of documents (when valid)
|
88 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
89 |
+
|
90 |
+
# Create collection_name for vector database
|
91 |
+
progress(0.1, desc="Creating collection name...")
|
92 |
+
collection_name = Path(list_file_path[0]).stem
|
93 |
+
|
94 |
+
# Fix potential issues from naming convention
|
95 |
+
## Remove space
|
96 |
+
collection_name = collection_name.replace(" ","-")
|
97 |
+
## Limit lenght to 50 characters
|
98 |
+
collection_name = collection_name[:50]
|
99 |
+
|
100 |
+
## Enforce start and end as alphanumeric character
|
101 |
+
if not collection_name[0].isalnum():
|
102 |
+
collection_name[0] = 'A'
|
103 |
+
if not collection_name[-1].isalnum():
|
104 |
+
collection_name[-1] = 'Z'
|
105 |
+
|
106 |
+
# print('list_file_path: ', list_file_path)
|
107 |
+
print('Collection name: ', collection_name)
|
108 |
+
progress(0.25, desc="Loading document...")
|
109 |
+
|
110 |
+
# Load document and create splits
|
111 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
112 |
+
|
113 |
+
# Create or load vector database
|
114 |
+
progress(0.5, desc="Generating vector database...")
|
115 |
+
|
116 |
+
# global vector_db
|
117 |
+
vector_db = create_db(doc_splits, collection_name)
|
118 |
+
progress(0.9, desc="Done!")
|
119 |
+
return vector_db, collection_name, "Complete!"
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
124 |
+
llm_name = list_llm[llm_option]
|
125 |
+
print("llm_name: ",llm_name)
|
126 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
127 |
+
return qa_chain, "Complete!"
|
128 |
+
|
129 |
+
def format_chat_history(message, chat_history):
|
130 |
+
formatted_chat_history = []
|
131 |
+
for user_message, bot_message in chat_history:
|
132 |
+
formatted_chat_history.append(f"User: {user_message}")
|
133 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
134 |
+
return formatted_chat_history
|
135 |
+
|
136 |
+
|
137 |
+
def conversation(qa_chain, message, history):
|
138 |
+
formatted_chat_history = format_chat_history(message, history)
|
139 |
+
#print("formatted_chat_history",formatted_chat_history)
|
140 |
+
|
141 |
+
# Generate response using QA chain
|
142 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
143 |
+
response_answer = response["answer"]
|
144 |
+
if response_answer.find("Helpful Answer:") != -1:
|
145 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
146 |
+
response_sources = response["source_documents"]
|
147 |
+
response_source1 = response_sources[0].page_content.strip()
|
148 |
+
response_source2 = response_sources[1].page_content.strip()
|
149 |
+
response_source3 = response_sources[2].page_content.strip()
|
150 |
+
# Langchain sources are zero-based
|
151 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
152 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
153 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
154 |
+
# print ('chat response: ', response_answer)
|
155 |
+
# print('DB source', response_sources)
|
156 |
+
|
157 |
+
# Append user message and response to chat history
|
158 |
+
new_history = history + [(message, response_answer)]
|
159 |
+
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
160 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
161 |
+
|