Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/tensorflow_tts
/datasets
/abstract_dataset.py
| # -*- coding: utf-8 -*- | |
| # Copyright 2020 Minh Nguyen (@dathudeptrai) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Abstract Dataset modules.""" | |
| import abc | |
| import tensorflow as tf | |
| class AbstractDataset(metaclass=abc.ABCMeta): | |
| """Abstract Dataset module for Dataset Loader.""" | |
| def get_args(self): | |
| """Return args for generator function.""" | |
| pass | |
| def generator(self): | |
| """Generator function, should have args from get_args function.""" | |
| pass | |
| def get_output_dtypes(self): | |
| """Return output dtypes for each element from generator.""" | |
| pass | |
| def get_len_dataset(self): | |
| """Return number of samples on dataset.""" | |
| pass | |
| def create( | |
| self, | |
| allow_cache=False, | |
| batch_size=1, | |
| is_shuffle=False, | |
| map_fn=None, | |
| reshuffle_each_iteration=True, | |
| ): | |
| """Create tf.dataset function.""" | |
| output_types = self.get_output_dtypes() | |
| datasets = tf.data.Dataset.from_generator( | |
| self.generator, output_types=output_types, args=(self.get_args()) | |
| ) | |
| if allow_cache: | |
| datasets = datasets.cache() | |
| if is_shuffle: | |
| datasets = datasets.shuffle( | |
| self.get_len_dataset(), | |
| reshuffle_each_iteration=reshuffle_each_iteration, | |
| ) | |
| if batch_size > 1 and map_fn is None: | |
| raise ValueError("map function must define when batch_size > 1.") | |
| if map_fn is not None: | |
| datasets = datasets.map(map_fn, tf.data.experimental.AUTOTUNE) | |
| datasets = datasets.batch(batch_size) | |
| datasets = datasets.prefetch(tf.data.experimental.AUTOTUNE) | |
| return datasets | |