vishred18's picture
Upload 364 files
d5ee97c
# -*- coding: utf-8 -*-
# Copyright 2020 TensorFlowTTS Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train ParallelWavegan."""
import tensorflow as tf
physical_devices = tf.config.list_physical_devices("GPU")
for i in range(len(physical_devices)):
tf.config.experimental.set_memory_growth(physical_devices[i], True)
import sys
sys.path.append(".")
import argparse
import logging
import os
import soundfile as sf
import numpy as np
import yaml
import tensorflow_tts
from examples.melgan.audio_mel_dataset import AudioMelDataset
from examples.melgan.train_melgan import collater
from tensorflow_tts.configs import (
ParallelWaveGANGeneratorConfig,
ParallelWaveGANDiscriminatorConfig,
)
from tensorflow_tts.models import (
TFParallelWaveGANGenerator,
TFParallelWaveGANDiscriminator,
)
from tensorflow_tts.trainers import GanBasedTrainer
from tensorflow_tts.losses import TFMultiResolutionSTFT
from tensorflow_tts.utils import calculate_2d_loss, calculate_3d_loss, return_strategy
from tensorflow_addons.optimizers import RectifiedAdam
class ParallelWaveganTrainer(GanBasedTrainer):
"""ParallelWaveGAN Trainer class based on GanBasedTrainer."""
def __init__(
self,
config,
strategy,
steps=0,
epochs=0,
is_generator_mixed_precision=False,
is_discriminator_mixed_precision=False,
):
"""Initialize trainer.
Args:
steps (int): Initial global steps.
epochs (int): Initial global epochs.
config (dict): Config dict loaded from yaml format configuration file.
is_generator_mixed_precision (bool): Use mixed precision for generator or not.
is_discriminator_mixed_precision (bool): Use mixed precision for discriminator or not.
"""
super(ParallelWaveganTrainer, self).__init__(
config=config,
steps=steps,
epochs=epochs,
strategy=strategy,
is_generator_mixed_precision=is_generator_mixed_precision,
is_discriminator_mixed_precision=is_discriminator_mixed_precision,
)
self.list_metrics_name = [
"adversarial_loss",
"gen_loss",
"real_loss",
"fake_loss",
"dis_loss",
"spectral_convergence_loss",
"log_magnitude_loss",
]
self.init_train_eval_metrics(self.list_metrics_name)
self.reset_states_train()
self.reset_states_eval()
def compile(self, gen_model, dis_model, gen_optimizer, dis_optimizer):
super().compile(gen_model, dis_model, gen_optimizer, dis_optimizer)
# define loss
self.stft_loss = TFMultiResolutionSTFT(**self.config["stft_loss_params"])
self.mse_loss = tf.keras.losses.MeanSquaredError(
reduction=tf.keras.losses.Reduction.NONE
)
self.mae_loss = tf.keras.losses.MeanAbsoluteError(
reduction=tf.keras.losses.Reduction.NONE
)
def compute_per_example_generator_losses(self, batch, outputs):
"""Compute per example generator losses and return dict_metrics_losses
Note that all element of the loss MUST has a shape [batch_size] and
the keys of dict_metrics_losses MUST be in self.list_metrics_name.
Args:
batch: dictionary batch input return from dataloader
outputs: outputs of the model
Returns:
per_example_losses: per example losses for each GPU, shape [B]
dict_metrics_losses: dictionary loss.
"""
dict_metrics_losses = {}
per_example_losses = 0.0
audios = batch["audios"]
y_hat = outputs
# calculate multi-resolution stft loss
sc_loss, mag_loss = calculate_2d_loss(
audios, tf.squeeze(y_hat, -1), self.stft_loss
)
gen_loss = 0.5 * (sc_loss + mag_loss)
if self.steps >= self.config["discriminator_train_start_steps"]:
p_hat = self._discriminator(y_hat)
p = self._discriminator(tf.expand_dims(audios, 2))
adv_loss = 0.0
adv_loss += calculate_3d_loss(
tf.ones_like(p_hat), p_hat, loss_fn=self.mse_loss
)
gen_loss += self.config["lambda_adv"] * adv_loss
# update dict_metrics_losses
dict_metrics_losses.update({"adversarial_loss": adv_loss})
dict_metrics_losses.update({"gen_loss": gen_loss})
dict_metrics_losses.update({"spectral_convergence_loss": sc_loss})
dict_metrics_losses.update({"log_magnitude_loss": mag_loss})
per_example_losses = gen_loss
return per_example_losses, dict_metrics_losses
def compute_per_example_discriminator_losses(self, batch, gen_outputs):
audios = batch["audios"]
y_hat = gen_outputs
y = tf.expand_dims(audios, 2)
p = self._discriminator(y)
p_hat = self._discriminator(y_hat)
real_loss = 0.0
fake_loss = 0.0
real_loss += calculate_3d_loss(tf.ones_like(p), p, loss_fn=self.mse_loss)
fake_loss += calculate_3d_loss(
tf.zeros_like(p_hat), p_hat, loss_fn=self.mse_loss
)
dis_loss = real_loss + fake_loss
# calculate per_example_losses and dict_metrics_losses
per_example_losses = dis_loss
dict_metrics_losses = {
"real_loss": real_loss,
"fake_loss": fake_loss,
"dis_loss": dis_loss,
}
return per_example_losses, dict_metrics_losses
def generate_and_save_intermediate_result(self, batch):
"""Generate and save intermediate result."""
import matplotlib.pyplot as plt
# generate
y_batch_ = self.one_step_predict(batch)
y_batch = batch["audios"]
utt_ids = batch["utt_ids"]
# convert to tensor.
# here we just take a sample at first replica.
try:
y_batch_ = y_batch_.values[0].numpy()
y_batch = y_batch.values[0].numpy()
utt_ids = utt_ids.values[0].numpy()
except Exception:
y_batch_ = y_batch_.numpy()
y_batch = y_batch.numpy()
utt_ids = utt_ids.numpy()
# check directory
dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps")
if not os.path.exists(dirname):
os.makedirs(dirname)
for idx, (y, y_) in enumerate(zip(y_batch, y_batch_), 0):
# convert to ndarray
y, y_ = tf.reshape(y, [-1]).numpy(), tf.reshape(y_, [-1]).numpy()
# plit figure and save it
utt_id = utt_ids[idx]
figname = os.path.join(dirname, f"{utt_id}.png")
plt.subplot(2, 1, 1)
plt.plot(y)
plt.title("groundtruth speech")
plt.subplot(2, 1, 2)
plt.plot(y_)
plt.title(f"generated speech @ {self.steps} steps")
plt.tight_layout()
plt.savefig(figname)
plt.close()
# save as wavefile
y = np.clip(y, -1, 1)
y_ = np.clip(y_, -1, 1)
sf.write(
figname.replace(".png", "_ref.wav"),
y,
self.config["sampling_rate"],
"PCM_16",
)
sf.write(
figname.replace(".png", "_gen.wav"),
y_,
self.config["sampling_rate"],
"PCM_16",
)
def main():
"""Run training process."""
parser = argparse.ArgumentParser(
description="Train ParallelWaveGan (See detail in tensorflow_tts/examples/parallel_wavegan/train_parallel_wavegan.py)"
)
parser.add_argument(
"--train-dir",
default=None,
type=str,
help="directory including training data. ",
)
parser.add_argument(
"--dev-dir",
default=None,
type=str,
help="directory including development data. ",
)
parser.add_argument(
"--use-norm", default=1, type=int, help="use norm mels for training or raw."
)
parser.add_argument(
"--outdir", type=str, required=True, help="directory to save checkpoints."
)
parser.add_argument(
"--config", type=str, required=True, help="yaml format configuration file."
)
parser.add_argument(
"--resume",
default="",
type=str,
nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
parser.add_argument(
"--generator_mixed_precision",
default=0,
type=int,
help="using mixed precision for generator or not.",
)
parser.add_argument(
"--discriminator_mixed_precision",
default=0,
type=int,
help="using mixed precision for discriminator or not.",
)
args = parser.parse_args()
# return strategy
STRATEGY = return_strategy()
# set mixed precision config
if args.generator_mixed_precision == 1 or args.discriminator_mixed_precision == 1:
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True})
args.generator_mixed_precision = bool(args.generator_mixed_precision)
args.discriminator_mixed_precision = bool(args.discriminator_mixed_precision)
args.use_norm = bool(args.use_norm)
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# check arguments
if args.train_dir is None:
raise ValueError("Please specify --train-dir")
if args.dev_dir is None:
raise ValueError("Please specify either --valid-dir")
# load and save config
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
config["version"] = tensorflow_tts.__version__
with open(os.path.join(args.outdir, "config.yml"), "w") as f:
yaml.dump(config, f, Dumper=yaml.Dumper)
for key, value in config.items():
logging.info(f"{key} = {value}")
# get dataset
if config["remove_short_samples"]:
mel_length_threshold = config["batch_max_steps"] // config[
"hop_size"
] + 2 * config["parallel_wavegan_generator_params"].get("aux_context_window", 0)
else:
mel_length_threshold = None
if config["format"] == "npy":
audio_query = "*-wave.npy"
mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy"
audio_load_fn = np.load
mel_load_fn = np.load
else:
raise ValueError("Only npy are supported.")
# define train/valid dataset
train_dataset = AudioMelDataset(
root_dir=args.train_dir,
audio_query=audio_query,
mel_query=mel_query,
audio_load_fn=audio_load_fn,
mel_load_fn=mel_load_fn,
mel_length_threshold=mel_length_threshold,
).create(
is_shuffle=config["is_shuffle"],
map_fn=lambda items: collater(
items,
batch_max_steps=tf.constant(config["batch_max_steps"], dtype=tf.int32),
hop_size=tf.constant(config["hop_size"], dtype=tf.int32),
),
allow_cache=config["allow_cache"],
batch_size=config["batch_size"]
* STRATEGY.num_replicas_in_sync
* config["gradient_accumulation_steps"],
)
valid_dataset = AudioMelDataset(
root_dir=args.dev_dir,
audio_query=audio_query,
mel_query=mel_query,
audio_load_fn=audio_load_fn,
mel_load_fn=mel_load_fn,
mel_length_threshold=mel_length_threshold,
).create(
is_shuffle=config["is_shuffle"],
map_fn=lambda items: collater(
items,
batch_max_steps=tf.constant(
config["batch_max_steps_valid"], dtype=tf.int32
),
hop_size=tf.constant(config["hop_size"], dtype=tf.int32),
),
allow_cache=config["allow_cache"],
batch_size=config["batch_size"] * STRATEGY.num_replicas_in_sync,
)
# define trainer
trainer = ParallelWaveganTrainer(
steps=0,
epochs=0,
config=config,
strategy=STRATEGY,
is_generator_mixed_precision=args.generator_mixed_precision,
is_discriminator_mixed_precision=args.discriminator_mixed_precision,
)
with STRATEGY.scope():
# define generator and discriminator
generator = TFParallelWaveGANGenerator(
ParallelWaveGANGeneratorConfig(
**config["parallel_wavegan_generator_params"]
),
name="parallel_wavegan_generator",
)
discriminator = TFParallelWaveGANDiscriminator(
ParallelWaveGANDiscriminatorConfig(
**config["parallel_wavegan_discriminator_params"]
),
name="parallel_wavegan_discriminator",
)
# dummy input to build model.
fake_mels = tf.random.uniform(shape=[1, 100, 80], dtype=tf.float32)
y_hat = generator(fake_mels)
discriminator(y_hat)
generator.summary()
discriminator.summary()
# define optimizer
generator_lr_fn = getattr(
tf.keras.optimizers.schedules, config["generator_optimizer_params"]["lr_fn"]
)(**config["generator_optimizer_params"]["lr_params"])
discriminator_lr_fn = getattr(
tf.keras.optimizers.schedules,
config["discriminator_optimizer_params"]["lr_fn"],
)(**config["discriminator_optimizer_params"]["lr_params"])
gen_optimizer = RectifiedAdam(learning_rate=generator_lr_fn, amsgrad=False)
dis_optimizer = RectifiedAdam(learning_rate=discriminator_lr_fn, amsgrad=False)
trainer.compile(
gen_model=generator,
dis_model=discriminator,
gen_optimizer=gen_optimizer,
dis_optimizer=dis_optimizer,
)
# start training
try:
trainer.fit(
train_dataset,
valid_dataset,
saved_path=os.path.join(config["outdir"], "checkpoints/"),
resume=args.resume,
)
except KeyboardInterrupt:
trainer.save_checkpoint()
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")
if __name__ == "__main__":
main()