Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/examples
/hifigan
/train_hifigan.py
# -*- coding: utf-8 -*- | |
# Copyright 2020 TensorFlowTTS Team | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Train Hifigan.""" | |
import tensorflow as tf | |
physical_devices = tf.config.list_physical_devices("GPU") | |
for i in range(len(physical_devices)): | |
tf.config.experimental.set_memory_growth(physical_devices[i], True) | |
import sys | |
sys.path.append(".") | |
import argparse | |
import logging | |
import os | |
import numpy as np | |
import soundfile as sf | |
import yaml | |
from tqdm import tqdm | |
import tensorflow_tts | |
from examples.melgan.audio_mel_dataset import AudioMelDataset | |
from examples.melgan.train_melgan import collater | |
from examples.melgan_stft.train_melgan_stft import MultiSTFTMelganTrainer | |
from tensorflow_tts.configs import ( | |
HifiGANDiscriminatorConfig, | |
HifiGANGeneratorConfig, | |
MelGANDiscriminatorConfig, | |
) | |
from tensorflow_tts.models import ( | |
TFHifiGANGenerator, | |
TFHifiGANMultiPeriodDiscriminator, | |
TFMelGANMultiScaleDiscriminator, | |
) | |
from tensorflow_tts.utils import return_strategy | |
class TFHifiGANDiscriminator(tf.keras.Model): | |
def __init__(self, multiperiod_dis, multiscale_dis, **kwargs): | |
super().__init__(**kwargs) | |
self.multiperiod_dis = multiperiod_dis | |
self.multiscale_dis = multiscale_dis | |
def call(self, x): | |
outs = [] | |
period_outs = self.multiperiod_dis(x) | |
scale_outs = self.multiscale_dis(x) | |
outs.extend(period_outs) | |
outs.extend(scale_outs) | |
return outs | |
def main(): | |
"""Run training process.""" | |
parser = argparse.ArgumentParser( | |
description="Train Hifigan (See detail in examples/hifigan/train_hifigan.py)" | |
) | |
parser.add_argument( | |
"--train-dir", | |
default=None, | |
type=str, | |
help="directory including training data. ", | |
) | |
parser.add_argument( | |
"--dev-dir", | |
default=None, | |
type=str, | |
help="directory including development data. ", | |
) | |
parser.add_argument( | |
"--use-norm", default=1, type=int, help="use norm mels for training or raw." | |
) | |
parser.add_argument( | |
"--outdir", type=str, required=True, help="directory to save checkpoints." | |
) | |
parser.add_argument( | |
"--config", type=str, required=True, help="yaml format configuration file." | |
) | |
parser.add_argument( | |
"--resume", | |
default="", | |
type=str, | |
nargs="?", | |
help='checkpoint file path to resume training. (default="")', | |
) | |
parser.add_argument( | |
"--verbose", | |
type=int, | |
default=1, | |
help="logging level. higher is more logging. (default=1)", | |
) | |
parser.add_argument( | |
"--generator_mixed_precision", | |
default=0, | |
type=int, | |
help="using mixed precision for generator or not.", | |
) | |
parser.add_argument( | |
"--discriminator_mixed_precision", | |
default=0, | |
type=int, | |
help="using mixed precision for discriminator or not.", | |
) | |
parser.add_argument( | |
"--pretrained", | |
default="", | |
type=str, | |
nargs="?", | |
help="path of .h5 melgan generator to load weights from", | |
) | |
args = parser.parse_args() | |
# return strategy | |
STRATEGY = return_strategy() | |
# set mixed precision config | |
if args.generator_mixed_precision == 1 or args.discriminator_mixed_precision == 1: | |
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True}) | |
args.generator_mixed_precision = bool(args.generator_mixed_precision) | |
args.discriminator_mixed_precision = bool(args.discriminator_mixed_precision) | |
args.use_norm = bool(args.use_norm) | |
# set logger | |
if args.verbose > 1: | |
logging.basicConfig( | |
level=logging.DEBUG, | |
stream=sys.stdout, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
elif args.verbose > 0: | |
logging.basicConfig( | |
level=logging.INFO, | |
stream=sys.stdout, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
else: | |
logging.basicConfig( | |
level=logging.WARN, | |
stream=sys.stdout, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
logging.warning("Skip DEBUG/INFO messages") | |
# check directory existence | |
if not os.path.exists(args.outdir): | |
os.makedirs(args.outdir) | |
# check arguments | |
if args.train_dir is None: | |
raise ValueError("Please specify --train-dir") | |
if args.dev_dir is None: | |
raise ValueError("Please specify either --valid-dir") | |
# load and save config | |
with open(args.config) as f: | |
config = yaml.load(f, Loader=yaml.Loader) | |
config.update(vars(args)) | |
config["version"] = tensorflow_tts.__version__ | |
with open(os.path.join(args.outdir, "config.yml"), "w") as f: | |
yaml.dump(config, f, Dumper=yaml.Dumper) | |
for key, value in config.items(): | |
logging.info(f"{key} = {value}") | |
# get dataset | |
if config["remove_short_samples"]: | |
mel_length_threshold = config["batch_max_steps"] // config[ | |
"hop_size" | |
] + 2 * config["hifigan_generator_params"].get("aux_context_window", 0) | |
else: | |
mel_length_threshold = None | |
if config["format"] == "npy": | |
audio_query = "*-wave.npy" | |
mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy" | |
audio_load_fn = np.load | |
mel_load_fn = np.load | |
else: | |
raise ValueError("Only npy are supported.") | |
# define train/valid dataset | |
train_dataset = AudioMelDataset( | |
root_dir=args.train_dir, | |
audio_query=audio_query, | |
mel_query=mel_query, | |
audio_load_fn=audio_load_fn, | |
mel_load_fn=mel_load_fn, | |
mel_length_threshold=mel_length_threshold, | |
).create( | |
is_shuffle=config["is_shuffle"], | |
map_fn=lambda items: collater( | |
items, | |
batch_max_steps=tf.constant(config["batch_max_steps"], dtype=tf.int32), | |
hop_size=tf.constant(config["hop_size"], dtype=tf.int32), | |
), | |
allow_cache=config["allow_cache"], | |
batch_size=config["batch_size"] | |
* STRATEGY.num_replicas_in_sync | |
* config["gradient_accumulation_steps"], | |
) | |
valid_dataset = AudioMelDataset( | |
root_dir=args.dev_dir, | |
audio_query=audio_query, | |
mel_query=mel_query, | |
audio_load_fn=audio_load_fn, | |
mel_load_fn=mel_load_fn, | |
mel_length_threshold=mel_length_threshold, | |
).create( | |
is_shuffle=config["is_shuffle"], | |
map_fn=lambda items: collater( | |
items, | |
batch_max_steps=tf.constant( | |
config["batch_max_steps_valid"], dtype=tf.int32 | |
), | |
hop_size=tf.constant(config["hop_size"], dtype=tf.int32), | |
), | |
allow_cache=config["allow_cache"], | |
batch_size=config["batch_size"] * STRATEGY.num_replicas_in_sync, | |
) | |
# define trainer | |
trainer = MultiSTFTMelganTrainer( | |
steps=0, | |
epochs=0, | |
config=config, | |
strategy=STRATEGY, | |
is_generator_mixed_precision=args.generator_mixed_precision, | |
is_discriminator_mixed_precision=args.discriminator_mixed_precision, | |
) | |
with STRATEGY.scope(): | |
# define generator and discriminator | |
generator = TFHifiGANGenerator( | |
HifiGANGeneratorConfig(**config["hifigan_generator_params"]), | |
name="hifigan_generator", | |
) | |
multiperiod_discriminator = TFHifiGANMultiPeriodDiscriminator( | |
HifiGANDiscriminatorConfig(**config["hifigan_discriminator_params"]), | |
name="hifigan_multiperiod_discriminator", | |
) | |
multiscale_discriminator = TFMelGANMultiScaleDiscriminator( | |
MelGANDiscriminatorConfig( | |
**config["melgan_discriminator_params"], | |
name="melgan_multiscale_discriminator", | |
) | |
) | |
discriminator = TFHifiGANDiscriminator( | |
multiperiod_discriminator, | |
multiscale_discriminator, | |
name="hifigan_discriminator", | |
) | |
# dummy input to build model. | |
fake_mels = tf.random.uniform(shape=[1, 100, 80], dtype=tf.float32) | |
y_hat = generator(fake_mels) | |
discriminator(y_hat) | |
if len(args.pretrained) > 1: | |
generator.load_weights(args.pretrained) | |
logging.info( | |
f"Successfully loaded pretrained weight from {args.pretrained}." | |
) | |
generator.summary() | |
discriminator.summary() | |
# define optimizer | |
generator_lr_fn = getattr( | |
tf.keras.optimizers.schedules, config["generator_optimizer_params"]["lr_fn"] | |
)(**config["generator_optimizer_params"]["lr_params"]) | |
discriminator_lr_fn = getattr( | |
tf.keras.optimizers.schedules, | |
config["discriminator_optimizer_params"]["lr_fn"], | |
)(**config["discriminator_optimizer_params"]["lr_params"]) | |
gen_optimizer = tf.keras.optimizers.Adam( | |
learning_rate=generator_lr_fn, | |
amsgrad=config["generator_optimizer_params"]["amsgrad"], | |
) | |
dis_optimizer = tf.keras.optimizers.Adam( | |
learning_rate=discriminator_lr_fn, | |
amsgrad=config["discriminator_optimizer_params"]["amsgrad"], | |
) | |
trainer.compile( | |
gen_model=generator, | |
dis_model=discriminator, | |
gen_optimizer=gen_optimizer, | |
dis_optimizer=dis_optimizer, | |
) | |
# start training | |
try: | |
trainer.fit( | |
train_dataset, | |
valid_dataset, | |
saved_path=os.path.join(config["outdir"], "checkpoints/"), | |
resume=args.resume, | |
) | |
except KeyboardInterrupt: | |
trainer.save_checkpoint() | |
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.") | |
if __name__ == "__main__": | |
main() | |