# This is the hyperparameter configuration file for MelGAN with Multi Resolution STFT. | |
# Please make sure this is adjusted for the LJSpeech dataset. If you want to | |
# apply to the other dataset, you might need to carefully change some parameters. | |
# This configuration performs 4000k iters. | |
########################################################### | |
# FEATURE EXTRACTION SETTING # | |
########################################################### | |
sampling_rate: 22050 | |
hop_size: 256 # Hop size. | |
format: "npy" | |
########################################################### | |
# GENERATOR NETWORK ARCHITECTURE SETTING # | |
########################################################### | |
model_type: "melgan_generator" | |
melgan_generator_params: | |
out_channels: 1 # Number of output channels. | |
kernel_size: 7 # Kernel size of initial and final conv layers. | |
filters: 512 # Initial number of channels for conv layers. | |
upsample_scales: [8, 8, 2, 2] # List of Upsampling scales. | |
stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack. | |
stacks: 3 # Number of stacks in a single residual stack module. | |
is_weight_norm: false | |
########################################################### | |
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING # | |
########################################################### | |
melgan_discriminator_params: | |
out_channels: 1 # Number of output channels. | |
scales: 3 # Number of multi-scales. | |
downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling. | |
downsample_pooling_params: # Parameters of the above pooling function. | |
pool_size: 4 | |
strides: 2 | |
kernel_sizes: [5, 3] # List of kernel size. | |
filters: 16 # Number of channels of the initial conv layer. | |
max_downsample_filters: 1024 # Maximum number of channels of downsampling layers. | |
downsample_scales: [4, 4, 4, 4] # List of downsampling scales. | |
nonlinear_activation: "LeakyReLU" # Nonlinear activation function. | |
nonlinear_activation_params: # Parameters of nonlinear activation function. | |
alpha: 0.2 | |
is_weight_norm: false | |
########################################################### | |
# STFT LOSS SETTING # | |
########################################################### | |
stft_loss_params: | |
fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss. | |
frame_steps: [120, 240, 50] # List of hop size for STFT-based loss | |
frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss. | |
########################################################### | |
# ADVERSARIAL LOSS SETTING # | |
########################################################### | |
lambda_feat_match: 10.0 | |
lambda_adv: 4.0 | |
########################################################### | |
# DATA LOADER SETTING # | |
########################################################### | |
batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1. | |
batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size. | |
batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size. | |
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps. | |
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory. | |
is_shuffle: true # shuffle dataset after each epoch. | |
########################################################### | |
# OPTIMIZER & SCHEDULER SETTING # | |
########################################################### | |
generator_optimizer_params: | |
lr_fn: "PiecewiseConstantDecay" | |
lr_params: | |
boundaries: [100000] # = discriminator_train_start_steps. | |
values: [0.0005, 0.0001] # learning rate each interval. | |
discriminator_optimizer_params: | |
lr_fn: "PiecewiseConstantDecay" | |
lr_params: | |
boundaries: [0] # after resume and start training discriminator, global steps is 100k, but local discriminator step is 0 | |
values: [0.0001, 0.0001] # learning rate each interval. | |
gradient_accumulation_steps: 1 | |
########################################################### | |
# INTERVAL SETTING # | |
########################################################### | |
discriminator_train_start_steps: 100000 # steps begin training discriminator | |
train_max_steps: 4000000 # Number of training steps. | |
save_interval_steps: 20000 # Interval steps to save checkpoint. | |
eval_interval_steps: 5000 # Interval steps to evaluate the network. | |
log_interval_steps: 200 # Interval steps to record the training log. | |
########################################################### | |
# OTHER SETTING # | |
########################################################### | |
num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results. | |