Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import T5ForConditionalGeneration, AutoTokenizer | |
st.title("SpellCorrectorT5") | |
st.markdown('SpellCorrectorT5 is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 50000 sentences modified by imputing random noises/errors and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.') | |
ttokenizer = AutoTokenizer.from_pretrained("./") | |
tmodel = T5ForConditionalGeneration.from_pretrained('./') | |
form = st.form("T5-form") | |
examples =["They're house is on fire", | |
"Look if their is fire on the top", | |
"Where os you're car?", | |
"Iu is going to rain", | |
"Feel free to raach out to me", | |
"Life is shoetest so live freely", | |
"We do the boy actually stole the books", | |
"I am doing fine. How is you?"] | |
input_text = form.selectbox(label="Choose an example", | |
options=examples) | |
form.write("(or)") | |
input_text = form.text_input(label='Enter your own sentence', value=input_text) | |
submit = form.form_submit_button("Submit") | |
if submit: | |
input_ids = ttokenizer.encode('seq: '+ input_text, return_tensors='pt') | |
# generate text until the output length (which includes the context length) reaches 50 | |
outputs = tmodel.generate( | |
input_ids, | |
do_sample=True, | |
max_length=50, | |
top_p=0.98, | |
num_return_sequences=2 | |
) | |
st.subheader("Suggested sentences: ") | |
i = 0 | |
for x in outputs: | |
out_text = ttokenizer.decode(x, skip_special_tokens=True) | |
i = i + 1 | |
st.success(str(i) + '. ' + out_text) |