vishalned commited on
Commit
76ad0c5
·
1 Parent(s): ee891d1
Files changed (1) hide show
  1. app.py +70 -38
app.py CHANGED
@@ -1,46 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- import numpy as np
3
  from PIL import Image
4
- import requests
5
-
6
  import hopsworks
7
- import joblib
8
 
9
  project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
10
  fs = project.get_feature_store()
11
 
 
12
 
13
- mr = project.get_model_registry()
14
- model = mr.get_model("iris_modal", version=1)
15
- model_dir = model.download()
16
- model = joblib.load(model_dir + "/iris_model.pkl")
17
-
18
-
19
- def iris(sepal_length, sepal_width, petal_length, petal_width):
20
- input_list = []
21
- input_list.append(sepal_length)
22
- input_list.append(sepal_width)
23
- input_list.append(petal_length)
24
- input_list.append(petal_width)
25
- # 'res' is a list of predictions returned as the label.
26
- res = model.predict(np.asarray(input_list).reshape(1, -1))
27
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
- # the first element.
29
- flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
30
- img = Image.open(requests.get(flower_url, stream=True).raw)
31
- return img
32
-
33
- demo = gr.Interface(
34
- fn=iris,
35
- title="Iris Flower Predictive Analytics",
36
- description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
37
- allow_flagging="never",
38
- inputs=[
39
- gr.inputs.Number(default=1.0, label="sepal length (cm)"),
40
- gr.inputs.Number(default=1.0, label="sepal width (cm)"),
41
- gr.inputs.Number(default=1.0, label="petal length (cm)"),
42
- gr.inputs.Number(default=1.0, label="petal width (cm)"),
43
- ],
44
- outputs=gr.Image(type="pil"))
45
-
46
- demo.launch()
 
1
+ # import gradio as gr
2
+ # import numpy as np
3
+ # from PIL import Image
4
+ # import requests
5
+
6
+ # import hopsworks
7
+ # import joblib
8
+
9
+ # project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
10
+ # fs = project.get_feature_store()
11
+
12
+
13
+ # mr = project.get_model_registry()
14
+ # model = mr.get_model("iris_modal", version=1)
15
+ # model_dir = model.download()
16
+ # model = joblib.load(model_dir + "/iris_model.pkl")
17
+
18
+
19
+ # def iris(sepal_length, sepal_width, petal_length, petal_width):
20
+ # input_list = []
21
+ # input_list.append(sepal_length)
22
+ # input_list.append(sepal_width)
23
+ # input_list.append(petal_length)
24
+ # input_list.append(petal_width)
25
+ # # 'res' is a list of predictions returned as the label.
26
+ # res = model.predict(np.asarray(input_list).reshape(1, -1))
27
+ # # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
+ # # the first element.
29
+ # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
30
+ # img = Image.open(requests.get(flower_url, stream=True).raw)
31
+ # return img
32
+
33
+ # demo = gr.Interface(
34
+ # fn=iris,
35
+ # title="Iris Flower Predictive Analytics",
36
+ # description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
37
+ # allow_flagging="never",
38
+ # inputs=[
39
+ # gr.inputs.Number(default=1.0, label="sepal length (cm)"),
40
+ # gr.inputs.Number(default=1.0, label="sepal width (cm)"),
41
+ # gr.inputs.Number(default=1.0, label="petal length (cm)"),
42
+ # gr.inputs.Number(default=1.0, label="petal width (cm)"),
43
+ # ],
44
+ # outputs=gr.Image(type="pil"))
45
+
46
+ # demo.launch()
47
+
48
  import gradio as gr
 
49
  from PIL import Image
 
 
50
  import hopsworks
 
51
 
52
  project = hopsworks.login(api_key_value="rA4UUi0EGe9o2Lpo.xoqva15Ia7l8Fz7PBFrFTV4WjSG8B1aQofJlVp3oV3Xp0iHyFTzw5ybC4OapypyU")
53
  fs = project.get_feature_store()
54
 
55
+ dataset_api = project.get_dataset_api()
56
 
57
+ dataset_api.download("Resources/images/latest_iris.png")
58
+ dataset_api.download("Resources/images/actual_iris.png")
59
+ dataset_api.download("Resources/images/df_recent.png")
60
+ dataset_api.download("Resources/images/confusion_matrix.png")
61
+
62
+ with gr.Blocks() as demo:
63
+ with gr.Row():
64
+ with gr.Column():
65
+ gr.Label("Today's Predicted Image")
66
+ input_img = gr.Image("latest_iris.png", elem_id="predicted-img")
67
+ with gr.Column():
68
+ gr.Label("Today's Actual Image")
69
+ input_img = gr.Image("actual_iris.png", elem_id="actual-img")
70
+ with gr.Row():
71
+ with gr.Column():
72
+ gr.Label("Recent Prediction History")
73
+ input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
74
+ with gr.Column():
75
+ gr.Label("Confusion Maxtrix with Historical Prediction Performance")
76
+ input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
77
+
78
+ demo.launch()