vishalkatheriya18 commited on
Commit
1408ebf
·
verified ·
1 Parent(s): 5f0ae39

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -19
app.py CHANGED
@@ -16,15 +16,14 @@ if 'models_loaded' not in st.session_state:
16
  st.session_state.models_loaded = True
17
 
18
  # Define image processing and classification functions
19
- def imageprocessing(url):
20
- response = requests.get(url)
21
- image = Image.open(BytesIO(response.content))
22
  encoding = st.session_state.image_processor(image.convert("RGB"), return_tensors="pt")
23
- return encoding, image
24
 
25
  def topwear(encoding):
26
  outputs = st.session_state.top_wear_model(**encoding)
27
  predicted_class_idx = outputs.logits.argmax(-1).item()
 
28
  return st.session_state.top_wear_model.config.id2label[predicted_class_idx]
29
 
30
  def patterns(encoding):
@@ -43,8 +42,8 @@ def sleevelengths(encoding):
43
  return st.session_state.sleeve_length_model.config.id2label[predicted_class_idx]
44
 
45
  # Run all models in parallel
46
- def pipes(image_url):
47
- encoding, image = imageprocessing(image_url)
48
 
49
  results = [None] * 4
50
 
@@ -70,20 +69,26 @@ def pipes(image_url):
70
  "sleeve_length": results[3]
71
  }
72
 
73
- return result_dict, image
74
 
75
  # Streamlit app UI
76
  st.title("Clothing Classification Pipeline")
77
 
78
- image_url = st.text_input("Enter Image URL")
79
- if image_url:
80
- start_time = time.time()
81
-
82
- try:
83
- result, img = pipes(image_url)
84
- st.image(img.resize((200, 200)), caption="Uploaded Image", use_column_width=False)
85
- st.write("Classification Results (JSON):")
86
- st.json(result) # Display results in JSON format
87
- st.write(f"Time taken: {time.time() - start_time:.2f} seconds")
88
- except Exception as e:
89
- st.error(f"Error processing the image: {str(e)}")
 
 
 
 
 
 
 
16
  st.session_state.models_loaded = True
17
 
18
  # Define image processing and classification functions
19
+ def imageprocessing(image):
 
 
20
  encoding = st.session_state.image_processor(image.convert("RGB"), return_tensors="pt")
21
+ return encoding
22
 
23
  def topwear(encoding):
24
  outputs = st.session_state.top_wear_model(**encoding)
25
  predicted_class_idx = outputs.logits.argmax(-1).item()
26
+ st.write(st.session_state.top_wear_model.config.id2label[predicted_class_idx])
27
  return st.session_state.top_wear_model.config.id2label[predicted_class_idx]
28
 
29
  def patterns(encoding):
 
42
  return st.session_state.sleeve_length_model.config.id2label[predicted_class_idx]
43
 
44
  # Run all models in parallel
45
+ def pipes(image):
46
+ encoding = imageprocessing(image)
47
 
48
  results = [None] * 4
49
 
 
69
  "sleeve_length": results[3]
70
  }
71
 
72
+ return result_dict
73
 
74
  # Streamlit app UI
75
  st.title("Clothing Classification Pipeline")
76
 
77
+ url = st.text_input("Paste image URL here...")
78
+ if url:
79
+ response = requests.get(url)
80
+ if response.status_code == 200:
81
+ image = Image.open(BytesIO(response.content))
82
+ st.image(image.resize((200, 200)), caption="Uploaded Image", use_column_width=False)
83
+
84
+ start_time = time.time()
85
+
86
+ try:
87
+ result = pipes(image)
88
+ st.write("Classification Results (JSON):")
89
+ st.json(result) # Display results in JSON format
90
+ st.write(f"Time taken: {time.time() - start_time:.2f} seconds")
91
+ except Exception as e:
92
+ st.error(f"Error processing the image: {str(e)}")
93
+ else:
94
+ st.error("Failed to load image from URL. Please check the URL.")