trl-4-dnd / trl /trainer /utils.py
vishaljoshi24's picture
Initial Commit
a080fe0
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import importlib.resources as pkg_resources
import json
import random
import warnings
from collections import deque
from dataclasses import dataclass, field
from importlib.metadata import version
from typing import Any, Literal, Optional, Union
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torch.utils.data
from accelerate import Accelerator, PartialState
from accelerate.state import AcceleratorState
from huggingface_hub import ModelCard, ModelCardData
from torch.nn.utils.rnn import pad_sequence
from transformers import (
BitsAndBytesConfig,
EvalPrediction,
GenerationConfig,
PreTrainedTokenizerBase,
TrainerState,
TrainingArguments,
is_comet_available,
)
from transformers.utils import (
ModelOutput,
is_peft_available,
is_rich_available,
is_torch_mlu_available,
is_torch_npu_available,
is_torch_xpu_available,
)
from ..trainer.model_config import ModelConfig
if is_rich_available():
from rich.console import Console
from rich.panel import Panel
from rich.table import Table
from rich.text import Text
if is_comet_available():
import comet_ml
if is_peft_available():
from peft import LoraConfig, PeftConfig
@dataclass
class DataCollatorForChatML:
"""
Data collator for ChatML format datasets.
"""
tokenizer: PreTrainedTokenizerBase
ignore_index: int = -100
max_length: int = None
prompt_key: str = "prompt"
messages_key: str = "messages"
def __post_init__(self):
if self.tokenizer.pad_token_id is None:
raise ValueError("The tokenizer does not have a pad token. Please set `pad_token_id` in the tokenizer.")
if self.max_length is None:
# set a sensible default
self.max_length = min(self.tokenizer.model_max_length, 1024)
def __call__(self, examples: list[dict[str, Any]]) -> dict[str, torch.Tensor]:
input_ids = []
attention_mask = []
prompts_input_ids = []
prompt_attention_mask = []
labels = []
for example in examples:
formatted_prompt = example.get(self.prompt_key, None)
if formatted_prompt is None:
prompt = example[self.messages_key][:-1]
formatted_prompt = self.tokenizer.apply_chat_template(
prompt, tokenize=False, add_generation_prompt=True
)
if "input_ids" not in example:
message = example[self.messages_key]
formatted_message = self.tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=False
)
tokenized_message = self.tokenizer(
formatted_message,
truncation=True,
max_length=self.max_length,
padding=False,
return_tensors=None,
add_special_tokens=False,
)
input_ids.append(tokenized_message["input_ids"])
if "attention_mask" in example:
attention_mask.append(tokenized_message["attention_mask"])
else:
attention_mask.append([1] * len(tokenized_message["input_ids"]))
else:
input_ids.append(example["input_ids"])
if "attention_mask" in example:
attention_mask.append(example["attention_mask"])
else:
attention_mask.append([1] * len(example["input_ids"]))
tokenized_prompt = self.tokenizer(
formatted_prompt,
truncation=True,
max_length=len(input_ids[-1]),
padding=False,
return_tensors=None,
add_special_tokens=False,
)
prompts_input_ids.append(tokenized_prompt["input_ids"])
prompt_attention_mask.append(tokenized_prompt["attention_mask"])
# Create the labels that will have all but the completion tokens of the example["input_ids"] set to ignore_index
label = [self.ignore_index] * len(input_ids[-1])
completion_start_idx = len(tokenized_prompt["input_ids"])
label[completion_start_idx:] = input_ids[-1][completion_start_idx:]
labels.append(label)
# convert to list of tensors and pad
input_ids = [torch.tensor(ids, dtype=torch.long) for ids in input_ids]
attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in attention_mask]
labels = [torch.tensor(label, dtype=torch.long) for label in labels]
input_ids = pad(input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
attention_mask = pad(attention_mask, padding_side="left", padding_value=0)
labels = pad(labels, padding_side="left", padding_value=self.ignore_index)
prompts_input_ids = [torch.tensor(ids, dtype=torch.long) for ids in prompts_input_ids]
prompt_attention_mask = [torch.tensor(mask, dtype=torch.long) for mask in prompt_attention_mask]
prompts_input_ids = pad(prompts_input_ids, padding_side="left", padding_value=self.tokenizer.pad_token_id)
prompt_attention_mask = pad(prompt_attention_mask, padding_side="left", padding_value=0)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
"prompts": prompts_input_ids,
"prompt_attention_mask": prompt_attention_mask,
}
@dataclass
class RewardDataCollatorWithPadding:
r"""
Reward DataCollator class that pads the inputs to the maximum length of the batch.
Args:
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer used for encoding the data.
padding (`Union[bool, str, `PaddingStrategy`]`, `optional`, defaults to `True`):
padding_strategy to pass to the tokenizer.
pad_to_multiple_of (`int` or `None`, `optional`, defaults to `None`):
If set will pad the sequence to a multiple of the provided value.
return_tensors (`str`, `optional`, defaults to `"pt"`):
The tensor type to use.
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str] = True
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
features_chosen = []
features_rejected = []
margin = []
# check if we have a margin. If we do, we need to batch it as well
has_margin = "margin" in features[0]
for feature in features:
# check if the keys are named as expected
if (
"input_ids_chosen" not in feature
or "input_ids_rejected" not in feature
or "attention_mask_chosen" not in feature
or "attention_mask_rejected" not in feature
):
raise ValueError(
"The features should include `input_ids_chosen`, `attention_mask_chosen`, `input_ids_rejected` and `attention_mask_rejected`"
)
features_chosen.append(
{
"input_ids": feature["input_ids_chosen"],
"attention_mask": feature["attention_mask_chosen"],
}
)
features_rejected.append(
{
"input_ids": feature["input_ids_rejected"],
"attention_mask": feature["attention_mask_rejected"],
}
)
if has_margin:
margin.append(feature["margin"])
batch_chosen = self.tokenizer.pad(
features_chosen,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch_rejected = self.tokenizer.pad(
features_rejected,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch = {
"input_ids_chosen": batch_chosen["input_ids"],
"attention_mask_chosen": batch_chosen["attention_mask"],
"input_ids_rejected": batch_rejected["input_ids"],
"attention_mask_rejected": batch_rejected["attention_mask"],
"return_loss": True,
}
if has_margin:
margin = torch.tensor(margin, dtype=torch.float)
batch["margin"] = margin
return batch
def pad(
tensors: list[torch.Tensor],
padding_value: int = 0,
padding_side: str = "right",
pad_to_multiple_of: Optional[int] = None,
) -> torch.Tensor:
"""
Pads a list of tensors to the same shape along the first dimension.
Args:
tensors (`list[torch.Tensor]`):
List of input tensors to pad.
padding_value (`int`):
Value to use for padding. Default is 0.
padding_side (`str`):
Side on which to add padding. Must be 'left' or 'right'. Default is 'right'.
pad_to_multiple_of (`int`, *optional*, defaults to `None`):
If set will pad the sequence to a multiple of the provided value.
Returns:
`torch.Tensor`:
A single tensor containing the padded tensors.
Examples:
```python
>>> import torch
>>> pad([torch.tensor([1, 2, 3]), torch.tensor([4, 5])])
tensor([[1, 2, 3],
[4, 5, 0]])
>>> pad([torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6]])])
tensor([[[1, 2],
[3, 4]],
[[5, 6],
[0, 0]]])
```
"""
# Determine the maximum shape for each dimension
output_shape = np.max([t.shape for t in tensors], 0).tolist()
# Apply pad_to_multiple_of to the first (sequence) dimension
if pad_to_multiple_of is not None:
remainder = output_shape[0] % pad_to_multiple_of
if remainder != 0:
output_shape[0] += pad_to_multiple_of - remainder
# Create an output tensor filled with the padding value
output = torch.full((len(tensors), *output_shape), padding_value, dtype=tensors[0].dtype, device=tensors[0].device)
for i, t in enumerate(tensors):
if padding_side == "left":
seq_start = output_shape[0] - t.shape[0]
elif padding_side == "right":
seq_start = 0
else:
raise ValueError("padding_side must be 'left' or 'right'")
# Define the slices
seq_slice = slice(seq_start, seq_start + t.shape[0])
slices = (seq_slice,) + tuple(slice(0, s) for s in t.shape[1:])
output[i][slices] = t
return output
@dataclass
class DPODataCollatorWithPadding:
r"""
DPO DataCollator class that pads the tokenized inputs to the maximum length of the batch.
Args:
pad_token_id (`int` defaults to 0):
The tokenizer's pad_token_id.
label_pad_token_id (`int`, defaults to -100):
The label used for masking.
is_encoder_decoder (`bool` or `None`, `optional`, defaults to `None`):
Whether you model has an encoder_decoder architecture.
"""
pad_token_id: int = 0
label_pad_token_id: int = -100
is_encoder_decoder: Optional[bool] = False
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
# first, pad everything to the same length
padded_batch = {}
for k in features[0].keys():
if k.endswith(("_input_ids", "_attention_mask", "_labels", "_pixel_values")):
if self.is_encoder_decoder:
to_pad = [torch.LongTensor(ex[k]) for ex in features]
if (k.startswith("prompt")) and (k.endswith("input_ids")):
if self.pad_token_id is None:
raise ValueError(
"Padding is enabled, but the tokenizer is not configured with a padding token."
" Explicitly set `tokenizer.pad_token` (e.g. `tokenizer.pad_token = tokenizer.eos_token`)"
" before calling the trainer."
)
padding_value = self.pad_token_id
elif k.endswith("_attention_mask"):
padding_value = 0
elif k.startswith(("chosen", "rejected", "completion")) or ("decoder" in k):
padding_value = self.label_pad_token_id
else:
raise ValueError(f"Unexpected key in batch '{k}'")
padded_batch[k] = pad_sequence(to_pad, batch_first=True, padding_value=padding_value)
else:
# Set padding value based on the key
if k.endswith("_input_ids"):
if self.pad_token_id is None:
raise ValueError(
"Padding is enabled, but the tokenizer is not configured with a padding token."
" Explicitly set `tokenizer.pad_token` (e.g. `tokenizer.pad_token = tokenizer.eos_token`)"
" before calling the trainer."
)
padding_value = self.pad_token_id
elif k.endswith("_labels"):
padding_value = self.label_pad_token_id
elif k.endswith("_attention_mask"):
padding_value = 0
elif k.endswith("_pixel_values"):
padding_value = 0 # TODO: check if this is correct
else:
raise ValueError(f"Unexpected key in batch '{k}'")
# Set padding side based on the key
if k in ["prompt_input_ids", "prompt_attention_mask"]:
padding_side = "left"
else:
padding_side = "right"
# Set the dtype
if k.endswith("_pixel_values"):
dtype = torch.float32 # will be downcasted if necessary by the Trainer
else:
dtype = torch.int64
# Convert to tensor and pad
to_pad = [torch.tensor(ex[k], dtype=dtype) for ex in features]
padded_batch[k] = pad(to_pad, padding_value=padding_value, padding_side=padding_side)
elif k.endswith("_logps"):
# the cached reference model logprobs
padded_batch[k] = torch.tensor([ex[k] for ex in features])
else:
padded_batch[k] = [ex[k] for ex in features]
return padded_batch
@dataclass
class RunningMoments:
"""
Calculates the running mean and standard deviation of a data stream. Reference:
https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/utils.py#L75
"""
accelerator: Accelerator
mean: float = 0
std: float = 1
var: float = 1
count: float = 1e-24
@torch.no_grad()
def update(self, xs: torch.Tensor) -> tuple[float, float]:
"""
Updates running moments from batch's moments computed across ranks
"""
if self.accelerator.use_distributed:
xs_mean, xs_var, xs_count = get_global_statistics(self.accelerator, xs)
else:
xs_count = xs.numel()
xs_var, xs_mean = torch.var_mean(xs, unbiased=False)
xs_mean, xs_var = xs_mean.float(), xs_var.float()
delta = xs_mean - self.mean
tot_count = self.count + xs_count
new_sum = xs_var * xs_count
# correct old_sum deviation accounting for the new mean
old_sum = self.var * self.count + delta**2 * self.count * xs_count / tot_count
tot_sum = old_sum + new_sum
self.mean += (delta * xs_count / tot_count).item()
new_var = tot_sum / tot_count
self.std = (new_var * tot_count / (tot_count - 1)).float().sqrt().item()
self.var = new_var.item()
self.count = tot_count
return xs_mean.item(), (xs_var * xs_count / (xs_count - 1)).float().sqrt().item()
def save_to_json(self, json_path: str):
"""Save the content of this instance in JSON format inside `json_path`."""
# save everything except accelerator
if self.accelerator.is_main_process:
save_dict = dataclasses.asdict(self, dict_factory=lambda x: {k: v for (k, v) in x if k != "accelerator"})
json_string = json.dumps(save_dict, indent=2, sort_keys=True) + "\n"
with open(json_path, "w", encoding="utf-8") as f:
f.write(json_string)
@classmethod
def load_from_json(cls, accelerator: Accelerator, json_path: str):
"""Create an instance from the content of `json_path`."""
# load everything except accelerator
with open(json_path, encoding="utf-8") as f:
text = f.read()
return cls(accelerator=accelerator, **json.loads(text))
@torch.no_grad()
def get_global_statistics(
accelerator, xs: torch.Tensor, mask=None, device="cpu"
) -> tuple[torch.Tensor, torch.Tensor, int]:
"""
Computes element-wise mean and variance of the tensor across processes. Reference:
https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/utils.py#L57C1-L73C75
"""
xs = xs.to(accelerator.device)
sum_and_count = torch.tensor([xs.sum(), (xs.numel() if mask is None else mask.sum())], device=xs.device)
sum_and_count = accelerator.reduce(sum_and_count)
global_sum, count = sum_and_count
global_mean = global_sum / count
sum_var = torch.sum(((xs - global_mean) ** 2).mul(1 if mask is None else mask))
sum_var = accelerator.reduce(sum_var)
global_var = sum_var / count
return global_mean.to(device), global_var.to(device), count.item()
def compute_accuracy(eval_pred: EvalPrediction) -> dict[str, float]:
predictions, labels = eval_pred
if predictions.ndim == 3:
# Token classification task. Shapes are (batch_size, seq_len, num_labels) and (batch_size, seq_len)
# Used to compute the accuracy in the prm_trainer.
predictions = np.argmax(predictions, axis=2)
# Flatten the predictions and labels to remove the ignored tokens.
predictions = np.array(
[p for prediction, label in zip(predictions, labels) for (p, lbl) in zip(prediction, label) if lbl != -100]
)
labels = np.array([lbl for label in labels for lbl in label if lbl != -100])
else:
# Here, predictions is rewards_chosen and rewards_rejected. Shapes are (batch_size, 2) and (batch_size,)
# We want to see how much of the time rewards_chosen > rewards_rejected.
equal_mask = predictions[:, 0] == predictions[:, 1]
equal_predictions_count = int(equal_mask.sum())
if equal_predictions_count > 0:
warnings.warn(
f"There are {equal_predictions_count} out of {len(predictions[:, 0])} instances where the predictions "
"for both options are equal. These instances are ignored in the accuracy computation.",
UserWarning,
)
# Filter out equal predictions
predictions = predictions[~equal_mask]
labels = labels[~equal_mask]
# Use the remaining predictions for accuracy calculation
predictions = np.argmax(predictions, axis=1)
accuracy = np.array(predictions == labels, dtype=float).mean().item()
return {"accuracy": accuracy}
def pad_to_length(tensor: torch.Tensor, length: int, pad_value: Union[int, float], dim: int = -1) -> torch.Tensor:
if tensor.size(dim) >= length:
return tensor
else:
pad_size = list(tensor.shape)
pad_size[dim] = length - tensor.size(dim)
return torch.cat(
[
tensor,
pad_value * torch.ones(*pad_size, dtype=tensor.dtype, device=tensor.device),
],
dim=dim,
)
def disable_dropout_in_model(model: torch.nn.Module) -> None:
for module in model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0
def exact_div(a, b, custom_error_message=""):
q = a // b
if a != q * b:
raise ValueError(f"{custom_error_message}, inexact division: {a} / {b} = {a / b}")
return q
# copied from https://github.com/kvablack/ddpo-pytorch/blob/main/ddpo_pytorch/stat_tracking.py#L5
class PerPromptStatTracker:
r"""
Class for tracking statistics per prompt. Mainly used to calculate advantage for the DPPO algorithm
Args:
buffer_size (`int`):
Size of the buffer to keep for each prompt.
min_count (`int`):
Minimum number of samples to keep in the buffer before calculating the mean and std.
"""
def __init__(self, buffer_size, min_count):
self.buffer_size = buffer_size
self.min_count = min_count
self.stats = {}
def update(self, prompts, rewards):
prompts = np.array(prompts)
rewards = np.array(rewards)
unique = np.unique(prompts)
advantages = np.empty_like(rewards)
for prompt in unique:
prompt_rewards = rewards[prompts == prompt]
if prompt not in self.stats:
self.stats[prompt] = deque(maxlen=self.buffer_size)
self.stats[prompt].extend(prompt_rewards)
if len(self.stats[prompt]) < self.min_count:
mean = np.mean(rewards)
std = np.std(rewards) + 1e-6
else:
mean = np.mean(self.stats[prompt])
std = np.std(self.stats[prompt]) + 1e-6
advantages[prompts == prompt] = (prompt_rewards - mean) / std
return advantages
def get_stats(self):
return {k: {"mean": np.mean(v), "std": np.std(v), "count": len(v)} for k, v in self.stats.items()}
def peft_module_casting_to_bf16(model):
for name, module in model.named_modules():
if isinstance(module, torch.nn.LayerNorm) or "norm" in name:
module = module.to(torch.float32)
elif any(x in name for x in ["lm_head", "embed_tokens", "wte", "wpe"]):
if hasattr(module, "weight"):
if module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
def get_quantization_config(model_args: ModelConfig) -> Optional[BitsAndBytesConfig]:
if model_args.load_in_4bit:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.torch_dtype, # For consistency with model weights, we use the same value as `torch_dtype`
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
bnb_4bit_quant_storage=model_args.torch_dtype,
)
elif model_args.load_in_8bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
else:
quantization_config = None
return quantization_config
def get_kbit_device_map() -> Optional[dict[str, int]]:
if torch.cuda.is_available() or is_torch_xpu_available():
return {"": PartialState().local_process_index}
else:
return None
def get_peft_config(model_args: ModelConfig) -> "Optional[PeftConfig]":
if model_args.use_peft is False:
return None
if not is_peft_available():
raise ValueError(
"You need to have PEFT library installed in your environment, make sure to install `peft`. "
"Make sure to run `pip install -U peft`."
)
peft_config = LoraConfig(
task_type=model_args.lora_task_type,
r=model_args.lora_r,
target_modules=model_args.lora_target_modules,
lora_alpha=model_args.lora_alpha,
lora_dropout=model_args.lora_dropout,
bias="none",
use_rslora=model_args.use_rslora,
use_dora=model_args.use_dora,
modules_to_save=model_args.lora_modules_to_save,
)
return peft_config
def get_exp_cap(value, decimal=4):
"""
Get the exponent cap of a value. This is used to cap the exponent of a value to avoid overflow. The formula is :
log(value.dtype.max) E.g.
For float32 data type, the maximum exponent value is 88.7228 to 4 decimal points.
Args:
value (`torch.Tensor`):
The input tensor to obtain the data type
decimal (`int`):
The number of decimal points of the output exponent cap. eg: direct calling exp(log(torch.float32.max))
will result in inf so we cap the exponent to 88.7228 to avoid overflow.
"""
vdtype_max = torch.zeros([1]).to(value.dtype) + torch.finfo(value.dtype).max
vdtype_log_max = torch.log(vdtype_max).to(value.device)
return torch.floor(vdtype_log_max * 10**decimal) / 10**decimal if decimal > 0 else vdtype_log_max
def cap_exp(value, cap=-1):
# Cap the exponent value below the upper-bound to avoid overflow, before calling torch.exp
cap = get_exp_cap(value) if cap < 0 else cap
return torch.exp(torch.clamp(value, max=cap))
def print_rich_table(df: pd.DataFrame) -> None:
if not is_rich_available():
raise ImportError(
"The function `print_rich_table` requires the `rich` library. Please install it with `pip install rich`."
)
console = Console()
table = Table(show_lines=True)
for column in df.columns:
table.add_column(column)
for _, row in df.iterrows():
table.add_row(*row.astype(str).tolist())
console.print(table)
SIMPLE_SFT_CHAT_TEMPLATE = "{% for message in messages %}{{' ' + message['content']}}{% endfor %}{{ eos_token }}"
# SIMPLE_SFT_CHAT_TEMPLATE simply ends things with an EOS token, this helps the SFT model learn to end the completions with EOS tokens
SIMPLE_CHAT_TEMPLATE = "{% for message in messages %}{{message['role'].capitalize() + ': ' + message['content'] + '\n\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
@dataclass
class OnlineTrainerState(TrainerState):
episode: int = 0
@dataclass
class OnPolicyConfig(TrainingArguments):
r"""
Base configuration class for on-policy trainers.
This class includes only the parameters that are specific to some on-policy training. For a full list of training
arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this
class may differ from those in [`~transformers.TrainingArguments`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
run_name (`str` or `None`, *optional*, defaults to `None`):
Name of the run.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
num_mini_batches (`int`, *optional*, defaults to `1`):
Number of minibatches to split a batch into.
total_episodes (`int` or `None`, *optional*, defaults to `None`):
Total number of episodes in the dataset.
local_rollout_forward_batch_size (`int`, *optional*, defaults to `64`):
Per rank no grad forward pass in the rollout phase.
num_sample_generations (`int`, *optional*, defaults to `10`):
Number of debugging samples generations (i.e., `generate_completions` calls) throughout training.
response_length (`int`, *optional*, defaults to `53`):
Length of the response.
stop_token (`str` or `None`, *optional*, defaults to `None`):
Specifies the stop token to use for text generation. This parameter is mutually exclusive with
`stop_token_id`.
- `None`: No stop token is applied, unless `stop_token_id` is specified.
- `'eos'`: Uses the tokenizer's `eos_token`.
stop_token_id (`int` or `None`, *optional*, defaults to `None`):
Specifies the ID of the stop token to use for text generation. If `None`, no stop token ID is applied,
unless `stop_token` is specified. This parameter is mutually exclusive with `stop_token`.
temperature (`float`, *optional*, defaults to `0.7`):
Sampling temperature.
missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`):
Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage to
generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive
value.
sft_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`):
Path to the SFT model.
world_size (`int` or `None`, *optional*, defaults to `None`):
Number of processes (GPUs) to use for the training.
num_total_batches (`int` or `None`, *optional*, defaults to `None`):
Number of total batches to train.
micro_batch_size (`int` or `None`, *optional*, defaults to `None`):
Micro batch size across devices (HF's `per_device_train_batch_size` * `world_size`).
local_batch_size (`int` or `None`, *optional*, defaults to `None`):
Batch size per GPU (HF's `per_device_train_batch_size` * `gradient_accumulation_steps`).
batch_size (`int` or `None`, *optional*, defaults to `None`):
Batch size across devices (HF's `per_device_train_batch_size` * `world_size` *
`gradient_accumulation_steps`).
local_mini_batch_size (`int` or `None`, *optional*, defaults to `None`):
Mini batch size per GPU.
mini_batch_size (`int` or `None`, *optional*, defaults to `None`):
Mini batch size across GPUs.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the model to the Hub after training.
"""
# Parameters whose default values are overridden from TrainingArguments
logging_steps: float = field(
default=10,
metadata={
"help": "Log every X updates steps. Should be an integer or a float in range `[0,1)`. If smaller than 1, "
"will be interpreted as ratio of total training steps."
},
)
bf16: Optional[bool] = field(
default=None,
metadata={
"help": "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA "
"architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU. If not set, it defaults to `True` if "
"`fp16` is not set."
},
)
run_name: Optional[str] = field(
default=None,
metadata={"help": "Name of the run."},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
num_mini_batches: int = field(
default=1,
metadata={"help": "Number of minibatches to split a batch into."},
)
total_episodes: Optional[int] = field(
default=None,
metadata={"help": "Total number of episodes in the dataset."},
)
local_rollout_forward_batch_size: int = field(
default=64,
metadata={"help": "Per rank no grad forward pass in the rollout phase."},
)
num_sample_generations: int = field(
default=10,
metadata={
"help": "Number of debugging samples generations (i.e., `generate_completions` calls) throughout training."
},
)
response_length: int = field(
default=53,
metadata={"help": "Length of the response."},
)
stop_token: Optional[Literal["eos"]] = field(
default=None,
metadata={
"help": "Specifies the stop token to use for text generation. This parameter is mutually exclusive with "
"`stop_token_id`."
},
)
stop_token_id: Optional[int] = field(
default=None,
metadata={
"help": "Specifies the ID of the stop token to use for text generation. If `None`, no stop token ID is "
"applied, unless `stop_token` is specified. This parameter is mutually exclusive with `stop_token`."
},
)
temperature: float = field(
default=0.7,
metadata={"help": "Sampling temperature."},
)
missing_eos_penalty: Optional[float] = field(
default=None,
metadata={
"help": "Penalty applied to the score when the model fails to generate an EOS token. This is useful to "
"encourage to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be "
"a positive value."
},
)
sft_model_path: str = field(
default="EleutherAI/pythia-160m",
metadata={"help": "Path to the SFT model."},
)
world_size: Optional[int] = field(
default=None,
metadata={"help": "Number of processes (GPUs) to use for the training."},
)
num_total_batches: Optional[int] = field(
default=None,
metadata={"help": "Number of total batches to train."},
)
micro_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Micro batch size across devices (HF's `per_device_train_batch_size` * `world_size`)."},
)
local_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Batch size per GPU (HF's `per_device_train_batch_size` * `gradient_accumulation_steps`)."},
)
batch_size: Optional[int] = field(
default=None,
metadata={
"help": "Batch size across devices (HF's `per_device_train_batch_size` * `world_size` * "
"`gradient_accumulation_steps`)."
},
)
local_mini_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Mini batch size per GPU."},
)
mini_batch_size: Optional[int] = field(
default=None,
metadata={"help": "Mini batch size across GPUs."},
)
push_to_hub: bool = field(
default=False,
metadata={"help": "Whether to push the model to the Hub after training."},
)
def __post_init__(self):
self.bf16 = not (self.fp16) if self.bf16 is None else self.bf16
super().__post_init__()
def first_true_indices(bools: torch.Tensor, dtype=torch.long) -> torch.Tensor:
"""
Takes an N-dimensional bool tensor and returns an (N-1)-dimensional tensor of integers giving the position of the
first True in each "row".
Returns the length of the rows (bools.size(-1)) if no element is True in a given row.
Args:
bools (`torch.Tensor`):
An N-dimensional boolean tensor.
dtype (`torch.dtype`, optional):
The desired data type of the output tensor. Defaults to `torch.long`.
Returns:
`torch.Tensor`:
An (N-1)-dimensional tensor of integers indicating the position of the first True in each row. If no True
value is found in a row, returns the length of the row.
"""
row_len = bools.size(-1)
zero_or_index = row_len * (~bools).type(dtype) + torch.arange(row_len, dtype=dtype, device=bools.device)
return torch.min(zero_or_index, dim=-1).values
def get_reward(
model: torch.nn.Module, query_responses: torch.Tensor, pad_token_id: int, context_length: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Computes the reward logits and the rewards for a given model and query responses.
Args:
model (`torch.nn.Module`):
The model used to compute the reward logits.
query_responses (`torch.Tensor`):
The tensor containing the query responses.
pad_token_id (`int`):
The token ID representing the pad token.
context_length (`int`):
The length of the context in the query responses.
Returns:
tuple:
- `reward_logits` (`torch.Tensor`):
The logits for the reward model.
- `final_rewards` (`torch.Tensor`):
The final rewards for each query response.
- `sequence_lengths` (`torch.Tensor`):
The lengths of the sequences in the query responses.
"""
attention_mask = query_responses != pad_token_id
position_ids = attention_mask.cumsum(1) - attention_mask.long() # exclusive cumsum
lm_backbone = getattr(model, model.base_model_prefix)
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
output = lm_backbone(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
return_dict=True,
output_hidden_states=True,
use_cache=False, # otherwise mistral-based RM would error out
)
reward_logits = model.score(output.hidden_states[-1])
sequence_lengths = first_true_indices(query_responses[:, context_length:] == pad_token_id) - 1 + context_length
# https://github.com/huggingface/transformers/blob/dc68a39c8111217683bf49a4912d0c9018bab33d/src/transformers/models/gpt2/modeling_gpt2.py#L1454
return (
reward_logits,
reward_logits[
torch.arange(reward_logits.size(0), device=reward_logits.device),
sequence_lengths,
].squeeze(-1),
sequence_lengths,
)
def forward(
model: torch.nn.Module,
query_responses: torch.Tensor,
pad_token_id: int,
) -> ModelOutput:
"""
Performs a forward pass through the model with the given query responses and pad token ID.
Args:
model (`torch.nn.Module`):
The model to perform the forward pass.
query_responses (`torch.Tensor`):
The tensor containing the query responses.
pad_token_id (`int`):
The token ID representing the pad token.
Returns:
`ModelOutput`:
The output of the model, including hidden states.
"""
attention_mask = query_responses != pad_token_id
position_ids = attention_mask.cumsum(1) - attention_mask.long()
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
return model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
return_dict=True,
output_hidden_states=True,
)
def prepare_deepspeed(
model: torch.nn.Module, per_device_train_batch_size: int, fp16: bool = False, bf16: bool = False
) -> torch.nn.Module:
"""
Prepares the model for training with DeepSpeed (both for stage 2 and 3), configuring the appropriate settings based
on the model and batch size.
Args:
model (`torch.nn.Module`):
The model to be prepared for DeepSpeed training.
per_device_train_batch_size (`int`):
The training batch size per device.
Returns:
`torch.nn.Module`:
The model initialized and configured with DeepSpeed for training.
"""
import deepspeed
deepspeed_plugin = AcceleratorState().deepspeed_plugin
config_kwargs = deepspeed_plugin.deepspeed_config
if config_kwargs["zero_optimization"]["stage"] != 3:
config_kwargs["train_micro_batch_size_per_gpu"] = per_device_train_batch_size
config_kwargs = {
"train_micro_batch_size_per_gpu": config_kwargs["train_micro_batch_size_per_gpu"],
"prescale_gradients": False,
"wall_clock_breakdown": False,
}
if bf16:
config_kwargs["bf16"] = {"enabled": True}
elif fp16:
config_kwargs["fp16"] = {"enabled": True}
else:
if hasattr(model, "config"):
hidden_size = (
max(model.config.hidden_sizes)
if getattr(model.config, "hidden_sizes", None)
else getattr(model.config, "hidden_size", None)
)
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
# Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0`
# This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0,
}
)
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
model.eval()
return model
def truncate_response(stop_token_id: int, pad_token_id: int, responses: torch.Tensor) -> torch.Tensor:
"""
Truncates the responses at the first occurrence of the stop token, filling the rest with pad tokens.
Args:
stop_token_id (`int`):
The token ID representing the stop token where truncation occurs.
pad_token_id (`int`):
The token ID representing the pad token used to fill the truncated responses.
responses (`torch.Tensor`):
The tensor containing the responses to be truncated.
Returns:
`torch.Tensor`:
The truncated responses tensor with pad tokens filled after the stop token.
"""
trunc_idxs = first_true_indices(responses == stop_token_id).unsqueeze(-1)
new_size = [1] * (len(responses.size()) - 1) + [responses.shape[1]]
idxs = torch.arange(responses.shape[1], device=responses.device).view(*new_size)
postprocessed_responses = torch.masked_fill(responses, idxs > trunc_idxs, pad_token_id)
return postprocessed_responses
def generate(
lm_backbone: torch.nn.Module, queries: torch.Tensor, pad_token_id: int, generation_config: GenerationConfig
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Generates sequences from the language model backbone in a way that does not affect padding tokens.
Args:
lm_backbone (`torch.nn.Module`):
The language model backbone used for generation.
queries (`torch.Tensor`):
The tensor containing the input queries.
pad_token_id (`int`):
The token ID representing the pad token.
generation_config (`GenerationConfig`):
The configuration for the generation process.
Returns:
tuple:
- `generated_sequences` (`torch.Tensor`):
The concatenated tensor of input queries and generated sequences.
- `logits` (`torch.Tensor`):
The logits output from the generation process.
"""
context_length = queries.shape[1]
attention_mask = queries != pad_token_id
input_ids = torch.masked_fill(queries, ~attention_mask, 0)
output = lm_backbone.generate(
input_ids=input_ids,
attention_mask=attention_mask,
# position_ids=attention_mask.cumsum(1) - attention_mask.long(), # not needed: already adjusted in generations
# https://github.com/huggingface/transformers/blob/ac33aeeeee2a7a89b89c93c2962e6feb90daef0a/src/transformers/models/gpt2/modeling_gpt2.py#L1227-L1250
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
)
logits = torch.stack(output.scores, 1)
return torch.cat((queries, output.sequences[:, context_length:]), dim=1), logits
@torch.no_grad()
def batch_generation(
model: torch.nn.Module,
queries: torch.Tensor,
local_rollout_forward_batch_size: int,
pad_token_id: int,
generation_config: GenerationConfig,
):
query_responses = []
logitss = []
batch_size = queries.shape[0]
for i in range(0, batch_size, local_rollout_forward_batch_size):
query = queries[i : i + local_rollout_forward_batch_size]
query_response, logits = generate(
model,
query,
pad_token_id,
generation_config,
)
query_responses.append(query_response)
logitss.append(logits)
# padding tensors
padded_query_responses = pad(query_responses, padding_value=pad_token_id, padding_side="right")
padded_logitss = pad(logitss, padding_value=0, padding_side="right")
# reshaping
padded_query_responses = padded_query_responses.view(-1, padded_query_responses.shape[-1])[:batch_size]
padded_logitss = padded_logitss.view(-1, *padded_logitss.shape[2:])[:batch_size]
return padded_query_responses, padded_logitss
def add_bos_token_if_needed(
bos_token_id: Optional[int],
prompt_len_input_ids: int,
prompt_tokens: dict[str, list[int]],
chosen_prompt_len_input_ids: int,
chosen_tokens: dict[str, list[int]],
rejected_prompt_len_input_ids: int,
rejected_tokens: dict[str, list[int]],
):
if bos_token_id is not None:
if prompt_len_input_ids == 0 or bos_token_id != prompt_tokens["prompt_input_ids"][0]:
prompt_tokens["prompt_input_ids"] = [bos_token_id] + prompt_tokens["prompt_input_ids"]
prompt_tokens["prompt_attention_mask"] = [1] + prompt_tokens["prompt_attention_mask"]
if chosen_prompt_len_input_ids == 0 or bos_token_id != chosen_tokens["prompt_input_ids"][0]:
chosen_tokens["prompt_input_ids"] = [bos_token_id] + chosen_tokens["prompt_input_ids"]
chosen_tokens["prompt_attention_mask"] = [1] + chosen_tokens["prompt_attention_mask"]
if rejected_prompt_len_input_ids == 0 or bos_token_id != rejected_tokens["prompt_input_ids"][0]:
rejected_tokens["prompt_input_ids"] = [bos_token_id] + rejected_tokens["prompt_input_ids"]
rejected_tokens["prompt_attention_mask"] = [1] + rejected_tokens["prompt_attention_mask"]
return prompt_tokens, chosen_tokens, rejected_tokens
def add_eos_token_if_needed(
eos_token_id: int, chosen_tokens: dict[str, list[int]], rejected_tokens: dict[str, list[int]]
):
if len(chosen_tokens["input_ids"]) == 0 or eos_token_id != chosen_tokens["input_ids"][-1]:
chosen_tokens["input_ids"].append(eos_token_id)
chosen_tokens["attention_mask"].append(1)
if len(rejected_tokens["input_ids"]) == 0 or eos_token_id != rejected_tokens["input_ids"][-1]:
rejected_tokens["input_ids"].append(eos_token_id)
rejected_tokens["attention_mask"].append(1)
return chosen_tokens, rejected_tokens
def truncate_right(
input_ids: torch.Tensor, stop_token_id: int, pad_token_id: int
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Truncates the input tensor from the right side after the first occurrence of the stop token.
Args:
input_ids (`torch.Tensor`):
The tensor containing the responses to be truncated
stop_token_id (`int`):
The token ID representing the stop token where truncation occurs
pad_token_id (`int`):
The token ID representing the pad token used to fill the truncated responses
Returns:
tuple:
- `output_ids` (`torch.Tensor`):
The truncated responses tensor with pad tokens filled after the stop token
- `mask` (`torch.Tensor`):
The mask tensor to indicate the padding tokens
"""
trunc_idxs = first_true_indices(input_ids == stop_token_id).unsqueeze(-1)
new_size = [1] * (len(input_ids.size()) - 1) + [input_ids.shape[1]]
idxs = torch.arange(input_ids.shape[1], device=input_ids.device).view(*new_size)
output_ids = torch.masked_fill(input_ids, idxs > trunc_idxs, pad_token_id)
mask = torch.masked_fill(torch.ones_like(input_ids), idxs > trunc_idxs, 0)
return output_ids, mask
def empty_cache() -> None:
"""Empties the cache of the available torch device.
This function checks for the availability of different torch devices (XPU, MLU, NPU, CUDA) and empties the cache of
the first available device it finds.
If none of the specific devices are available, it defaults to emptying the CUDA cache.
"""
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_mlu_available():
torch.mlu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
def decode_and_strip_padding(inputs: torch.Tensor, tokenizer: PreTrainedTokenizerBase) -> list[str]:
"""
Decodes the input tensor and strips the padding tokens.
Args:
inputs (`torch.Tensor`):
The input tensor to be decoded.
tokenizer (`transformers.PreTrainedTokenizerBase`):
The tokenizer used to decode the input tensor.
Returns:
`list[str]`:
The list of decoded strings with padding tokens stripped.
"""
decoded = tokenizer.batch_decode(inputs, skip_special_tokens=False)
return [d.replace(tokenizer.pad_token, "") for d in decoded]
def generate_model_card(
base_model: Optional[str],
model_name: str,
hub_model_id: str,
dataset_name: Optional[str],
tags: list[str],
wandb_url: Optional[str],
trainer_name: str,
trainer_citation: Optional[str] = None,
paper_title: Optional[str] = None,
paper_id: Optional[str] = None,
comet_url: Optional[str] = None,
) -> ModelCard:
"""
Generate a `ModelCard` from a template.
Args:
base_model (`str` or `None`):
Base model name.
model_name (`str`):
Model name.
hub_model_id (`str`):
Hub model ID as `username/model_id`.
dataset_name (`str` or `None`):
Dataset name.
tags (`list[str]`):
Tags.
wandb_url (`str` or `None`):
Weights & Biases run URL.
comet_url (`str` or `None`):
Comet experiment URL.
trainer_name (`str`):
Trainer name.
trainer_citation (`str` or `None`, defaults to `None`):
Trainer citation as a BibTeX entry.
paper_title (`str` or `None`, defaults to `None`):
Paper title.
paper_id (`str` or `None`, defaults to `None`):
ArXiv paper ID as `YYMM.NNNNN`.
Returns:
`ModelCard`:
A ModelCard object.
"""
card_data = ModelCardData(
base_model=base_model,
datasets=dataset_name,
library_name="transformers",
licence="license",
model_name=model_name,
tags=["generated_from_trainer", *tags],
)
card = ModelCard.from_template(
card_data,
template_path=str(pkg_resources.files("trl").joinpath("templates/lm_model_card.md")),
base_model=base_model,
model_name=model_name,
hub_model_id=hub_model_id,
dataset_name=dataset_name,
wandb_url=wandb_url,
comet_url=comet_url,
trainer_name=trainer_name,
trainer_citation=trainer_citation,
paper_title=paper_title,
paper_id=paper_id,
trl_version=version("trl"),
transformers_version=version("transformers"),
pytorch_version=version("torch"),
datasets_version=version("datasets"),
tokenizers_version=version("tokenizers"),
)
return card
def get_comet_experiment_url() -> Optional[str]:
"""
If Comet integration is enabled, return the URL of the current Comet experiment; otherwise, return `None`.
"""
if not is_comet_available():
return None
if comet_ml.get_running_experiment() is not None:
return comet_ml.get_running_experiment().url
return None
def log_table_to_comet_experiment(name: str, table: pd.DataFrame) -> None:
"""
If Comet integration is enabled logs a table to the Comet experiment if it is currently running.
Args:
name (`str`):
Table name.
table (`pd.DataFrame`):
The Pandas DataFrame containing the table to log.
"""
if not is_comet_available():
raise ModuleNotFoundError("The comet-ml is not installed. Please install it first: pip install comet-ml")
experiment = comet_ml.get_running_experiment()
if experiment is not None:
experiment.log_table(tabular_data=table, filename=name)
def flush_left(mask: torch.Tensor, *tensors: torch.Tensor) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
"""
Shift non-zero elements in the mask and corresponding tensors to the left.
This function operates on a binary mask and any number of additional tensors with the same dimensions as the mask.
For each row, non-zero values are shifted to the leftmost positions. Then, columns that contain only zeros across
all rows are truncated from the mask and tensors. Visually, this operation can be represented as follows:
```
[[0, 0, x, x, x, x], -> [[x, x, x, x],
[0, x, x, x, 0, 0]] [x, x, x, 0]]
```
Args:
mask (`torch.Tensor`):
2D tensor (binary mask) with shape `(N, M)`.
*tensors (`torch.Tensor`)
One or more 2D tensors with the same shape as `mask`. These tensors will be processed alongside `mask`,
with non-zero values shifted and excess zero columns truncated in the same manner.
Returns:
`torch.Tensor`:
Updated binary mask with non-zero values flushed to the left and trailing zero columns removed.
`*torch.Tensor`
Updated tensors, processed in the same way as the mask.
Example:
```python
>>> mask = torch.tensor([[0, 0, 1, 1, 1], [0, 1, 1, 0, 0]])
>>> tensor = torch.tensor([[9, 9, 2, 3, 4], [9, 5, 6, 9, 9]])
>>> new_mask, new_tensor = flush_left(mask, tensor)
>>> print(new_mask)
tensor([[1, 1, 1],
[1, 1, 0]])
>>> print(new_tensor)
tensor([[2, 3, 4],
[5, 6, 0]])
```
"""
_, M = mask.shape
# Create copy of mask and tensors
mask_copy = mask.clone()
tensors = [t.clone() for t in tensors]
# Shift non-zero values to the left
first_non_zero = mask_copy.argmax(dim=1)
pos = torch.arange(M, device=mask_copy.device).unsqueeze(0)
idx_roll = (pos + first_non_zero.unsqueeze(1)) % M
mask_roll = mask_copy.gather(1, idx_roll)
rolled_tensors = [t.gather(1, idx_roll) for t in tensors]
# Truncate trailing columns that are all zeros in mask_roll
col_sums = mask_roll.sum(dim=0)
empty_cols = col_sums == 0
first_empty_col = int(empty_cols.to(torch.int8).argmax()) if empty_cols.any() else M
flushed_mask = mask_roll[:, :first_empty_col]
flushed_tensors = [t[:, :first_empty_col] for t in rolled_tensors]
if not flushed_tensors:
return flushed_mask
return flushed_mask, *flushed_tensors
def flush_right(mask: torch.Tensor, *tensors: torch.Tensor) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
"""
Shift non-zero elements in the mask and corresponding tensors to the right. See `flush_left` for details.
"""
_, M = mask.shape
# Create copy of mask and tensors
mask_copy = mask.clone()
tensors = [t.clone() for t in tensors]
# Shift non-zero values to the right
flipped_mask = torch.fliplr(mask_copy)
first_non_zero = flipped_mask.argmax(dim=1)
pos = torch.arange(M, device=mask_copy.device).unsqueeze(0)
idx_roll = (pos - first_non_zero.unsqueeze(1)) % M
mask_roll = mask_copy.gather(1, idx_roll)
rolled_tensors = [t.gather(1, idx_roll) for t in tensors]
# Truncate leading columns that are all zeros in mask_roll
col_sums = mask_roll.sum(dim=0)
non_empty_cols = col_sums != 0
first_non_empty_col = int(non_empty_cols.to(torch.int8).argmax()) if non_empty_cols.any() else M
flushed_mask = mask_roll[:, first_non_empty_col:]
flushed_tensors = [t[:, first_non_empty_col:] for t in rolled_tensors]
if not flushed_tensors:
return flushed_mask
return flushed_mask, *flushed_tensors
def selective_log_softmax(logits, index) -> torch.Tensor:
"""
A memory-efficient implementation of the common `log_softmax -> gather` operation.
This function is equivalent to the following naive implementation:
```python
logps = torch.gather(logits.log_softmax(-1), dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
```
Args:
logits (`torch.Tensor`):
Logits tensor of shape `(..., num_classes)`.
index (`torch.Tensor`):
Index tensor of shape `(...)`, specifying the positions to gather from the log-softmax output.
Returns:
`torch.Tensor`:
Gathered log probabilities with the same shape as `index`.
"""
if logits.dtype in [torch.float32, torch.float64]:
selected_logits = torch.gather(logits, dim=-1, index=index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
else:
# logsumexp approach is unstable with bfloat16, fall back to slightly less efficient approach
per_token_logps = []
for row_logits, row_labels in zip(logits, index): # loop to reduce peak mem consumption
row_logps = F.log_softmax(row_logits, dim=-1)
row_per_token_logps = row_logps.gather(dim=-1, index=row_labels.unsqueeze(-1)).squeeze(-1)
per_token_logps.append(row_per_token_logps)
per_token_logps = torch.stack(per_token_logps)
return per_token_logps
def entropy_from_logits(logits, chunk_size: int = 1) -> torch.Tensor:
"""
Compute the Shannon entropy (in nats) for each row of *logits* without
materialising the full soft-max in memory.
The batch dimension is processed in chunks of size `chunk_size` so that
only a subset of rows is expanded to probabilities at any one time.
Args:
logits (`torch.Tensor`):
Logits tensor of shape `(..., num_classes)`. Entropy is taken along the last axis; all
leading dimensions are preserved.
chunk_size (`int`, *optional*, defaults to `1`):
Number of rows to process per iteration.
Returns:
`torch.Tensor`:
Entropy values with shape `logits.shape[:-1]`.
"""
per_token_entropies = []
for logits_chunk in logits.split(chunk_size, dim=0):
logps = F.log_softmax(logits_chunk, dim=-1)
chunk_entropy = -(torch.exp(logps) * logps).sum(-1)
per_token_entropies.extend(chunk_entropy)
per_token_entropies = torch.stack(per_token_entropies)
return per_token_entropies
def print_prompt_completions_sample(
prompts: list[str],
completions: list[str],
rewards: dict[str, list[float]],
advantages: list[float],
step: int,
num_samples: int = None,
) -> None:
"""
Print out a sample of model completions to the console with multiple reward metrics.
This function creates a nicely formatted table showing prompt-completion pairs, useful for monitoring model outputs
during training. It requires the `rich` library to be installed.
Args:
prompts (`list[str]`):
List of prompts.
completions (`list[str]`):
List of completions corresponding to the prompts.
rewards (`dict[str, list[float]]`):
Dictionary where keys are reward names and values are lists of rewards.
advantages (`list[float]`):
List of advantages corresponding to the prompts and completions.
step (`int`):
Current training step number, used in the output title.
num_samples (`int` or `None`, *optional*, defaults to `None`):
Number of random samples to display. If `None` (default), all items will be displayed.
Example:
```python
>>> from trl.trainer.utils import print_prompt_completions_sample
>>> prompts = ["The sky is", "The sun is"]
>>> completions = [" blue.", " in the sky."]
>>> rewards = {"Correctness": [0.123, 0.456], "Format": [0.789, 0.101]}
>>> advantages = [0.987, 0.654]
>>> print_prompt_completions_sample(prompts, completions, rewards, advantages, 42)
โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Step 42 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“ โ”‚
โ”‚ โ”ƒ Prompt โ”ƒ Completion โ”ƒ Correctness โ”ƒ Format โ”ƒ Advantage โ”ƒ โ”‚
โ”‚ โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ โ”‚
โ”‚ โ”‚ The sky is โ”‚ blue. โ”‚ 0.12 โ”‚ 0.79 โ”‚ 0.99 โ”‚ โ”‚
โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚
โ”‚ โ”‚ The sun is โ”‚ in the sky. โ”‚ 0.46 โ”‚ 0.10 โ”‚ 0.65 โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
```
"""
if not is_rich_available():
raise ImportError(
"The function `print_prompt_completions_sample` requires the `rich` library. Please install it with "
"`pip install rich`."
)
console = Console()
table = Table(show_header=True, header_style="bold white", expand=True)
# Add columns
table.add_column("Prompt", style="bright_yellow")
table.add_column("Completion", style="bright_green")
for reward_name in rewards.keys():
table.add_column(reward_name, style="bold cyan", justify="right")
table.add_column("Advantage", style="bold magenta", justify="right")
# Some basic input validation
if num_samples is not None:
if num_samples >= len(prompts):
num_samples = None
elif num_samples <= 0:
return
# Subsample data if num_samples is specified
if num_samples is not None:
indices = random.sample(range(len(prompts)), num_samples)
prompts = [prompts[i] for i in indices]
completions = [completions[i] for i in indices]
rewards = {key: [val[i] for i in indices] for key, val in rewards.items()}
advantages = [advantages[i] for i in indices]
for i in range(len(prompts)):
reward_values = [f"{rewards[key][i]:.2f}" for key in rewards.keys()] # 2 decimals
table.add_row(Text(prompts[i]), Text(completions[i]), *reward_values, f"{advantages[i]:.2f}")
table.add_section() # Adds a separator between rows
panel = Panel(table, expand=False, title=f"Step {step}", border_style="bold white")
console.print(panel)