trl-4-dnd / trl /extras /vllm_client.py
vishaljoshi24's picture
Initial Commit
a080fe0
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import atexit
import base64
import logging
import socket
import time
from io import BytesIO
from typing import Optional, Union
from urllib.parse import urlparse
import torch
from torch import nn
from ..import_utils import is_requests_available, is_vllm_ascend_available, is_vllm_available
if is_requests_available():
import requests
from requests import ConnectionError
if is_vllm_available():
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
from vllm.distributed.utils import StatelessProcessGroup
if is_vllm_ascend_available():
from vllm_ascend.distributed.device_communicators.pyhccl import PyHcclCommunicator as PyNcclCommunicator
logger = logging.getLogger(__name__)
class VLLMClient:
"""
A client class to interact with a vLLM server.
This class provides methods to generate completions, initialize and manage weight update groups, and update model
weights in a distributed setting. Before using it, start the vLLM server with `trl vllm-serve`.
Args:
base_url (`str` or `None`, *optional*, defaults to `None`):
Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `host` and `server_port` are
ignored.
host (`str`, *optional*, defaults to `"0.0.0.0"`):
IP address of the vLLM server. Ignored if `base_url` is provided.
server_port (`int`, *optional*, defaults to `8000`):
Port number of the vLLM server. Ignored if `base_url` is provided.
group_port (`int`, *optional*, defaults to `51216`):
Port number for the weight update group.
connection_timeout (`float`, *optional*, defaults to `0.0`):
Total timeout duration in seconds to wait for the server to be up. If the server is not up after the
timeout, a `ConnectionError` is raised.
Examples:
Run the vLLM server with the model `Qwen/Qwen2.5-7B`:
```
$ trl vllm-serve --model Qwen/Qwen2.5-7B
...
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
```
Use the client to generate completions and update model weights:
```python
>>> from trl.extras.vllm_client import VLLMClient
>>> client = VLLMClient()
>>> client.generate(["Hello, AI!", "Tell me a joke"])
[[2980, 498, 1492, 752, 448, 264, 13027, 8645, 30, 358, 2776, 4460, 311, 3270, 264, 2025],
[911, 7988, 1251, 382, 3838, 653, 498, 1618, 4325, 879, 2581, 20027, 264, 21428, 30, 362]]
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-7B", device_map="cuda")
>>> client.init_communicator(device="cuda")
>>> client.update_model_params(model)
```
There are several ways to initialize the client:
```python
VLLMClient(base_url="http://localhost:8000")
VLLMClient(base_url="http://192.168.1.100:8000")
VLLMClient(host="localhost", server_port=8000)
VLLMClient(host="192.168.1.100", server_port=8000)
```
"""
def __init__(
self,
base_url: Optional[str] = None,
host: str = "0.0.0.0",
server_port: int = 8000,
group_port: int = 51216,
connection_timeout: float = 0.0,
):
if not is_requests_available():
raise ImportError("requests is not installed. Please install it with `pip install requests`.")
if not is_vllm_available():
raise ImportError("vLLM is not installed. Please install it with `pip install vllm`.")
self.session = requests.Session()
if base_url is not None:
# Parse the base_url to extract host and port
parsed_url = urlparse(base_url)
self.host = socket.gethostbyname(parsed_url.hostname)
scheme = parsed_url.scheme or "http"
self.base_url = f"{scheme}://{parsed_url.netloc}{parsed_url.path}"
else:
self.host = host
self.server_port = server_port
self.base_url = f"http://{self.host}:{self.server_port}"
self.group_port = group_port
self.check_server(connection_timeout) # check server and fail after timeout
def check_server(self, total_timeout: float = 0.0, retry_interval: float = 2.0):
"""
Check server availability with retries on failure, within a total timeout duration. If the server is not up
after the total timeout duration, raise a `ConnectionError`.
Args:
retry_interval (`float`, *optional*, defaults to `2.0`):
Interval in seconds between retries.
total_timeout (`float`, *optional*, defaults to `0.0`):
Total timeout duration in seconds.
"""
url = f"{self.base_url}/health/"
start_time = time.time() # Record the start time
while True:
try:
response = requests.get(url)
except requests.exceptions.RequestException as exc:
# Check if the total timeout duration has passed
elapsed_time = time.time() - start_time
if elapsed_time >= total_timeout:
raise ConnectionError(
f"The vLLM server can't be reached at {self.base_url} after {total_timeout} seconds. Make "
"sure the server is running by running `trl vllm-serve`."
) from exc
else:
if response.status_code == 200:
if "X-Forwarded-For" in response.headers:
self.host = response.headers["X-Forwarded-For"]
logger.info("Server is up!")
return None
# Retry logic: wait before trying again
logger.info(f"Server is not up yet. Retrying in {retry_interval} seconds...")
time.sleep(retry_interval)
def generate(
self,
prompts: list[str],
images: Optional[list] = None,
n: int = 1,
repetition_penalty: float = 1.0,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = -1,
min_p: float = 0.0,
max_tokens: int = 16,
guided_decoding_regex: Optional[str] = None,
generation_kwargs: Optional[dict] = None,
) -> list[list[int]]:
"""
Generates model completions for the provided prompts.
Args:
prompts (`list[str]`):
List of text prompts for which the model will generate completions.
images (`list[PIL.Image]` or `None`, *optional*, defaults to `None`):
List of PIL Images to send along with the prompts.
n (`int`, *optional*, defaults to `1`):
Number of completions to generate for each prompt.
repetition_penalty (`float`, *optional*, defaults to `1.0`):
Parameter for repetition penalty. 1.0 means no penalty.
temperature (`float`, *optional*, defaults to `1.0`):
Temperature parameter for sampling. Higher values increase diversity.
top_p (`float`, *optional*, defaults to `1.0`):
Top-p sampling parameter.`1.0` means no truncation.
top_k (`int`, *optional*, defaults to `-1`):
Top-k sampling parameter. `-1` means no truncation.
min_p (`float`, *optional*, defaults to `0.0`):
Minimum probability for sampling.
max_tokens (`int`, *optional*, defaults to `16`):
Maximum number of tokens to generate for each prompt.
guided_decoding_regex (`str` or `None`, *optional*, defaults to `None`):
Regular expression to guide the decoding process.
generation_kwargs (`dict` or `None`, *optional*, defaults to `None`):
Additional generation parameters to pass to the vLLM `SamplingParams`. This can include parameters like
`seed`, `frequency_penalty`, etc. If it contains keys that conflict with the other parameters, they
will override them.
Returns:
`list[list[int]]`:
List of lists of token IDs representing the model-generated completions for each prompt.
"""
url = f"{self.base_url}/generate/"
def pil_to_base64(image):
buffer = BytesIO()
image.save(buffer, format="PNG")
img_bytes = buffer.getvalue()
return base64.b64encode(img_bytes).decode("utf-8")
# Convert PIL images to base64 strings
images = [pil_to_base64(img) for img in images] if images else None
response = self.session.post(
url,
json={
"prompts": prompts,
"images": images,
"n": n,
"repetition_penalty": repetition_penalty,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"min_p": min_p,
"max_tokens": max_tokens,
"guided_decoding_regex": guided_decoding_regex,
"generation_kwargs": generation_kwargs or {},
},
)
if response.status_code == 200:
return response.json()["completion_ids"]
else:
raise Exception(f"Request failed: {response.status_code}, {response.text}")
def init_communicator(self, device: Union[torch.device, str, int] = 0):
"""
Initializes the weight update group in a distributed setup for model synchronization.
Args:
device (`torch.device`, `str`, or `int`, *optional*, defaults to `0`):
Device of trainer main process. It's the device that will be used for the weights synchronization.
Can be a `torch.device` object, a string like `'cuda:0'`, or an integer device index.
"""
# Get the world size from the server
url = f"{self.base_url}/get_world_size/"
response = requests.get(url)
if response.status_code == 200:
vllm_world_size = response.json()["world_size"]
else:
raise Exception(f"Request failed: {response.status_code}, {response.text}")
world_size = vllm_world_size + 1 # add the client to the world
self.rank = vllm_world_size # the client's rank is the last process
# Initialize weight update group
url = f"{self.base_url}/init_communicator/"
client_device_uuid = str(torch.cuda.get_device_properties(device).uuid)
# In the server side, the host is set to 0.0.0.0
response = self.session.post(
url,
json={
"host": "0.0.0.0",
"port": self.group_port,
"world_size": world_size,
"client_device_uuid": client_device_uuid,
},
)
if response.status_code != 200:
raise Exception(f"Request failed: {response.status_code}, {response.text}")
# Brief delay to allow server initialization. While not strictly required (client socket will retry on
# connection failure), this prevents log warnings like:
# [W416 23:24:57.460001114 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3
time.sleep(0.1)
# Set up the communication group for weight broadcasting
pg = StatelessProcessGroup.create(host=self.host, port=self.group_port, rank=self.rank, world_size=world_size)
self.pynccl_comm = PyNcclCommunicator(pg, device=device)
# When the client object is deleted, close the weight update group
atexit.register(self.close_communicator)
def update_named_param(self, name: str, weights: torch.Tensor):
"""
Updates a specific named parameter in the model and broadcasts it to other processes.
Args:
name (`str`):
Name of the layer whose weights are being updated.
weights (`torch.Tensor`):
Tensor containing the updated weights.
"""
dtype, shape = str(weights.dtype), tuple(weights.shape)
url = f"{self.base_url}/update_named_param/"
response = self.session.post(url, json={"name": name, "dtype": dtype, "shape": shape})
if response.status_code != 200:
raise Exception(f"Request failed: {response.status_code}, {response.text}")
# Broadcast the weights to the other processes
self.pynccl_comm.broadcast(weights, src=self.rank)
self.pynccl_comm.group.barrier()
def update_model_params(self, model: nn.Module):
"""
Updates all parameters of the given model by calling `update_named_param` for each parameter in the model.
Args:
model (`nn.Module`):
Model whose parameters (weights/biases) are to be updated.
"""
for name, param in model.named_parameters():
# Update each parameter individually
self.update_named_param(name, param.data)
def reset_prefix_cache(self):
"""
Resets the prefix cache for the model.
"""
url = f"{self.base_url}/reset_prefix_cache/"
response = self.session.post(url)
if response.status_code != 200:
raise Exception(f"Request failed: {response.status_code}, {response.text}")
def close_communicator(self):
"""
Closes the weight update group and cleans up the communication group.
"""
url = f"{self.base_url}/close_communicator/"
try:
response = self.session.post(url)
except ConnectionError:
# The server might be already down, so we don't need to close the communicator
pass
else:
if response.status_code != 200:
raise Exception(f"Request failed: {response.status_code}, {response.text}")
# Example usage
if __name__ == "__main__":
from vllm import SamplingParams
client = VLLMClient()
client.init_communicator(device="cuda")
# Generate completions
responses = client.generate(["Hello, AI!", "Tell me a joke"], n=4, max_tokens=32, sampling_params=SamplingParams())
print("Responses:", responses) # noqa
# Update model weights
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-7B").to("cuda")
client.update_model_params(model)