Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# /// script | |
# dependencies = [ | |
# "trl @ git+https://github.com/huggingface/trl.git", | |
# "kernels", | |
# ] | |
# /// | |
""" | |
pip install β-upgrade kernels | |
Example: | |
accelerate launch \ | |
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \ | |
examples/sccripts/sft_gpt_oss.py \ | |
--torch_dtype bfloat16 \ | |
--model_name_or_path openai/gpt-oss-20b \ | |
--packing true packing_strategy wrapped \ | |
--run_name 20b-full-eager \ | |
--attn_implementation kernels-community/vllm-flash-attn3 \ | |
--dataset_num_proc 12 \ | |
--dataset_name HuggingFaceH4/Multilingual-Thinking \ | |
--gradient_checkpointing \ | |
--max_length 4096 \ | |
--per_device_train_batch_size 2 \ | |
--num_train_epochs 1 \ | |
--logging_steps 1 \ | |
--warmup_ratio 0.03 \ | |
--lr_scheduler_type cosine_with_min_lr \ | |
--lr_scheduler_kwargs '{"min_lr_rate": 0.1}' \ | |
--output_dir gpt-oss-20b-multilingual-reasoner \ | |
--report_to trackio \ | |
--seed 42 | |
""" | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer, Mxfp4Config | |
from trl import ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_peft_config | |
def main(script_args, training_args, model_args): | |
# Load model & tokenizer | |
quantization_config = Mxfp4Config(dequantize=True) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
trust_remote_code=model_args.trust_remote_code, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=model_args.torch_dtype, | |
use_cache=False if training_args.gradient_checkpointing else True, | |
quantization_config=quantization_config, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs) | |
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) | |
# Load dataset | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
# Train model | |
trainer = SFTTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
trainer.train() | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
if __name__ == "__main__": | |
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) | |
script_args, training_args, model_args, _ = parser.parse_args_and_config(return_remaining_strings=True) | |
main(script_args, training_args, model_args) | |