Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import os | |
| import random | |
| import textwrap | |
| import warnings | |
| from collections import defaultdict | |
| from contextlib import nullcontext | |
| from pathlib import Path | |
| from typing import Any, Callable, Literal, Optional, Union | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from accelerate import PartialState | |
| from datasets import Dataset | |
| from torch import autocast | |
| from torch.utils.data import DataLoader | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| BaseImageProcessor, | |
| DataCollator, | |
| FeatureExtractionMixin, | |
| PreTrainedModel, | |
| PreTrainedTokenizerBase, | |
| ProcessorMixin, | |
| Trainer, | |
| is_comet_available, | |
| is_torch_xla_available, | |
| is_wandb_available, | |
| ) | |
| from transformers.trainer_callback import TrainerCallback | |
| from transformers.trainer_utils import EvalLoopOutput | |
| from transformers.utils import is_peft_available, is_torch_fx_proxy | |
| from ..data_utils import maybe_apply_chat_template, maybe_extract_prompt | |
| from .orpo_config import ORPOConfig | |
| from .utils import ( | |
| DPODataCollatorWithPadding, | |
| add_bos_token_if_needed, | |
| add_eos_token_if_needed, | |
| disable_dropout_in_model, | |
| generate_model_card, | |
| get_comet_experiment_url, | |
| log_table_to_comet_experiment, | |
| pad_to_length, | |
| peft_module_casting_to_bf16, | |
| selective_log_softmax, | |
| ) | |
| if is_peft_available(): | |
| from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training | |
| if is_wandb_available(): | |
| import wandb | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| class ORPOTrainer(Trainer): | |
| r""" | |
| Initialize ORPOTrainer. | |
| Args: | |
| model (`transformers.PreTrainedModel`): | |
| The model to train, preferably an `AutoModelForSequenceClassification`. | |
| args (`ORPOConfig`): | |
| The ORPO config arguments to use for training. | |
| data_collator (`transformers.DataCollator`): | |
| The data collator to use for training. If None is specified, the default data collator | |
| (`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the | |
| sequences in the batch, given a dataset of paired sequences. | |
| train_dataset (`datasets.Dataset`): | |
| The dataset to use for training. | |
| eval_dataset (`datasets.Dataset`): | |
| The dataset to use for evaluation. | |
| processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*, defaults to `None`): | |
| Processing class used to process the data. If provided, will be used to automatically process the inputs | |
| for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
| reuse the fine-tuned model. | |
| model_init (`Callable[[], transformers.PreTrainedModel]`): | |
| The model initializer to use for training. If None is specified, the default model initializer will be | |
| used. | |
| callbacks (`list[transformers.TrainerCallback]`): | |
| The callbacks to use for training. | |
| optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
| The optimizer and scheduler to use for training. | |
| preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
| The function to use to preprocess the logits before computing the metrics. | |
| peft_config (`dict`, defaults to `None`): | |
| The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in | |
| a PEFT model. | |
| compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
| The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to | |
| metric values. | |
| """ | |
| _tag_names = ["trl", "orpo"] | |
| def __init__( | |
| self, | |
| model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, | |
| args: Optional[ORPOConfig] = None, | |
| data_collator: Optional[DataCollator] = None, | |
| train_dataset: Optional[Dataset] = None, | |
| eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
| processing_class: Optional[ | |
| Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
| ] = None, | |
| model_init: Optional[Callable[[], PreTrainedModel]] = None, | |
| callbacks: Optional[list[TrainerCallback]] = None, | |
| optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
| preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
| peft_config: Optional[dict] = None, | |
| compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, | |
| ): | |
| if args.model_init_kwargs is None: | |
| model_init_kwargs = {} | |
| elif not isinstance(model, str): | |
| raise ValueError("You passed model_kwargs to the ORPOTrainer. But your model is already instantiated.") | |
| else: | |
| model_init_kwargs = args.model_init_kwargs | |
| torch_dtype = model_init_kwargs.get("torch_dtype") | |
| if torch_dtype is not None: | |
| # Convert to `torch.dtype` if an str is passed | |
| if isinstance(torch_dtype, str) and torch_dtype != "auto": | |
| torch_dtype = getattr(torch, torch_dtype) | |
| if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): | |
| raise ValueError( | |
| f"Invalid `torch_dtype` passed to the ORPOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." | |
| ) | |
| model_init_kwargs["torch_dtype"] = torch_dtype | |
| if isinstance(model, str): | |
| model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) | |
| # Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16` | |
| # has been called in order to properly call autocast if needed. | |
| self._peft_has_been_casted_to_bf16 = False | |
| if not is_peft_available() and peft_config is not None: | |
| raise ValueError( | |
| "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" | |
| ) | |
| elif is_peft_available() and peft_config is not None: | |
| # if model is a peft model and we have a peft_config, we merge and unload it first | |
| if isinstance(model, PeftModel): | |
| model = model.merge_and_unload() | |
| if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): | |
| _support_gc_kwargs = hasattr( | |
| args, "gradient_checkpointing_kwargs" | |
| ) and "gradient_checkpointing_kwargs" in list( | |
| inspect.signature(prepare_model_for_kbit_training).parameters | |
| ) | |
| prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} | |
| if _support_gc_kwargs: | |
| prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs | |
| model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) | |
| elif args.gradient_checkpointing: | |
| # For backward compatibility with older versions of transformers | |
| if hasattr(model, "enable_input_require_grads"): | |
| model.enable_input_require_grads() | |
| else: | |
| def make_inputs_require_grad(module, input, output): | |
| output.requires_grad_(True) | |
| model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
| # get peft model with the given config | |
| model = get_peft_model(model, peft_config) | |
| if args.bf16 and getattr(model, "is_loaded_in_4bit", False): | |
| peft_module_casting_to_bf16(model) | |
| # If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager | |
| self._peft_has_been_casted_to_bf16 = True | |
| # For models that use gradient_checkpointing, we need to attach a hook that enables input | |
| # to explicitly have `requires_grad=True`, otherwise training will either silently | |
| # fail or completely fail. | |
| elif args.gradient_checkpointing: | |
| # For backward compatibility with older versions of transformers | |
| if hasattr(model, "enable_input_require_grads"): | |
| model.enable_input_require_grads() | |
| else: | |
| def make_inputs_require_grad(module, input, output): | |
| output.requires_grad_(True) | |
| model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
| if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): | |
| raise ValueError( | |
| "`generate_during_eval=True` requires Weights and Biases or Comet to be installed." | |
| " Please install `wandb` or `comet-ml` to resolve." | |
| ) | |
| if model is not None: | |
| self.is_encoder_decoder = model.config.is_encoder_decoder | |
| elif args.is_encoder_decoder is None: | |
| raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") | |
| else: | |
| self.is_encoder_decoder = args.is_encoder_decoder | |
| if self.is_encoder_decoder: | |
| self.decoder_start_token_id = model.config.decoder_start_token_id | |
| self.pad_token_id = model.config.pad_token_id | |
| if processing_class is None: | |
| raise ValueError("processing_class must be specified to tokenize a ORPO dataset.") | |
| if args.max_length is None: | |
| warnings.warn( | |
| "`max_length` is not set in the ORPOConfig's init" | |
| " it will default to `512` by default, but you should do it yourself in the future.", | |
| UserWarning, | |
| ) | |
| max_length = 512 | |
| else: | |
| max_length = args.max_length | |
| if args.max_prompt_length is None: | |
| warnings.warn( | |
| "`max_prompt_length` is not set in the ORPOConfig's init" | |
| " it will default to `128` by default, but you should do it yourself in the future.", | |
| UserWarning, | |
| ) | |
| max_prompt_length = 128 | |
| else: | |
| max_prompt_length = args.max_prompt_length | |
| if args.max_completion_length is None and self.is_encoder_decoder: | |
| warnings.warn( | |
| "When using an encoder decoder architecture, you should set `max_completion_length` in the ORPOConfig's init" | |
| " it will default to `128` by default, but you should do it yourself in the future.", | |
| UserWarning, | |
| ) | |
| self.max_completion_length = 128 | |
| else: | |
| self.max_completion_length = args.max_completion_length | |
| if data_collator is None: | |
| data_collator = DPODataCollatorWithPadding( | |
| pad_token_id=processing_class.pad_token_id, | |
| label_pad_token_id=args.label_pad_token_id, | |
| is_encoder_decoder=self.is_encoder_decoder, | |
| ) | |
| if args.remove_unused_columns: | |
| args.remove_unused_columns = False | |
| # warn users | |
| warnings.warn( | |
| "When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your TrainingArguments" | |
| " we have set it for you, but you should do it yourself in the future.", | |
| UserWarning, | |
| ) | |
| self.use_dpo_data_collator = True | |
| else: | |
| self.use_dpo_data_collator = False | |
| # Disable dropout in the model and reference model | |
| if args.disable_dropout: | |
| disable_dropout_in_model(model) | |
| self.max_length = max_length | |
| self.generate_during_eval = args.generate_during_eval | |
| self.label_pad_token_id = args.label_pad_token_id | |
| self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id | |
| self.max_prompt_length = max_prompt_length | |
| self.truncation_mode = args.truncation_mode | |
| self.processing_class = processing_class | |
| self.beta = args.beta | |
| self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) | |
| self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) | |
| if self.aux_loss_enabled and self.aux_loss_coef == 0.0: | |
| warnings.warn( | |
| "You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " | |
| "`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " | |
| "greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " | |
| "loss.", | |
| UserWarning, | |
| ) | |
| self._stored_metrics = defaultdict(lambda: defaultdict(list)) | |
| # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the | |
| # input tensor associated with the key "input_ids". However, in ORPO, the sampled data does not include the | |
| # "input_ids" key. Instead, the available keys are "prompt_input_ids", "chosen_input_ids", and | |
| # "rejected_input_ids". As a result, the trainer issues the warning: "Could not estimate the number of tokens | |
| # of the input, floating-point operations will not be computed." To suppress this warning, we set the | |
| # "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate | |
| # that the warning has already been issued. | |
| model.warnings_issued["estimate_tokens"] = True | |
| # Compute that only on the main process for faster data processing. | |
| # see: https://github.com/huggingface/trl/pull/1255 | |
| with PartialState().main_process_first(): | |
| # Extract the prompt if needed, and apply the chat template if needed | |
| train_dataset = train_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc) | |
| train_dataset = train_dataset.map( | |
| maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}, num_proc=args.dataset_num_proc | |
| ) | |
| train_dataset = train_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc) | |
| if eval_dataset is not None: | |
| eval_dataset = eval_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc) | |
| eval_dataset = eval_dataset.map( | |
| maybe_apply_chat_template, | |
| fn_kwargs={"tokenizer": processing_class}, | |
| num_proc=args.dataset_num_proc, | |
| ) | |
| eval_dataset = eval_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc) | |
| super().__init__( | |
| model=model, | |
| args=args, | |
| data_collator=data_collator, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| processing_class=processing_class, | |
| model_init=model_init, | |
| compute_metrics=compute_metrics, | |
| callbacks=callbacks, | |
| optimizers=optimizers, | |
| preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
| ) | |
| # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the | |
| # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set | |
| # self.model_accepts_loss_kwargs to False to enable scaling. | |
| self.model_accepts_loss_kwargs = False | |
| # Add tags for models that have been loaded with the correct transformers version | |
| if hasattr(self.model, "add_model_tags"): | |
| self.model.add_model_tags(self._tag_names) | |
| if not hasattr(self, "accelerator"): | |
| raise AttributeError( | |
| "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." | |
| ) | |
| def build_tokenized_answer(self, prompt, answer): | |
| """ | |
| Llama tokenizer does satisfy `enc(a + b) = enc(a) + enc(b)`. It does ensure `enc(a + b) = enc(a) + enc(a + | |
| b)[len(enc(a)):]`. Reference: | |
| https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257 | |
| """ | |
| full_tokenized = self.processing_class(prompt + answer, add_special_tokens=False) | |
| prompt_input_ids = self.processing_class(prompt, add_special_tokens=False)["input_ids"] | |
| answer_input_ids = full_tokenized["input_ids"][len(prompt_input_ids) :] | |
| answer_attention_mask = full_tokenized["attention_mask"][len(prompt_input_ids) :] | |
| # Concat tokens to form `enc(a) + enc(a + b)[len(enc(a)):]` | |
| full_concat_input_ids = np.concatenate([prompt_input_ids, answer_input_ids]) | |
| # Prepare input tokens for token by token comparison | |
| full_input_ids = np.array(full_tokenized["input_ids"]) | |
| if len(full_input_ids) != len(full_concat_input_ids): | |
| raise ValueError("Prompt input ids and answer input ids should have the same length.") | |
| # On some tokenizers, like Llama-2 tokenizer, there are occasions where tokens | |
| # can be merged together when tokenizing prompt+answer. This could result | |
| # on the last token from the prompt being different when tokenized on its own | |
| # vs when done as prompt+answer. | |
| response_token_ids_start_idx = len(prompt_input_ids) | |
| # If tokenized prompt is different than both prompt+answer, then it means the | |
| # last token has changed due to merging. | |
| if prompt_input_ids != full_tokenized["input_ids"][:response_token_ids_start_idx]: | |
| response_token_ids_start_idx -= 1 | |
| prompt_input_ids = full_tokenized["input_ids"][:response_token_ids_start_idx] | |
| prompt_attention_mask = full_tokenized["attention_mask"][:response_token_ids_start_idx] | |
| if len(prompt_input_ids) != len(prompt_attention_mask): | |
| raise ValueError("Prompt input ids and attention mask should have the same length.") | |
| answer_input_ids = full_tokenized["input_ids"][response_token_ids_start_idx:] | |
| answer_attention_mask = full_tokenized["attention_mask"][response_token_ids_start_idx:] | |
| return dict( | |
| prompt_input_ids=prompt_input_ids, | |
| prompt_attention_mask=prompt_attention_mask, | |
| input_ids=answer_input_ids, | |
| attention_mask=answer_attention_mask, | |
| ) | |
| def tokenize_row(self, feature, model: Optional[Union[PreTrainedModel, nn.Module]] = None) -> dict: | |
| """Tokenize a single row from a ORPO specific dataset. | |
| At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation in case the prompt + | |
| chosen or prompt + rejected responses is/are too long. First we truncate the prompt; if we're still too long, | |
| we truncate the chosen/rejected. | |
| We also create the labels for the chosen/rejected responses, which are of length equal to the sum of the length | |
| of the prompt and the chosen/rejected response, with label_pad_token_id for the prompt tokens. | |
| """ | |
| batch = {} | |
| prompt = feature["prompt"] | |
| chosen = feature["chosen"] | |
| rejected = feature["rejected"] | |
| if not self.is_encoder_decoder: | |
| # Check issues below for more details | |
| # 1. https://github.com/huggingface/trl/issues/907 | |
| # 2. https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257 | |
| # 3. https://github.com/LianjiaTech/BELLE/issues/337 | |
| if not isinstance(prompt, str): | |
| raise ValueError(f"prompt should be an str but got {type(prompt)}") | |
| prompt_tokens = self.processing_class(prompt, add_special_tokens=False) | |
| prompt_tokens = {f"prompt_{k}": v for k, v in prompt_tokens.items()} | |
| if not isinstance(chosen, str): | |
| raise ValueError(f"chosen should be an str but got {type(chosen)}") | |
| chosen_tokens = self.build_tokenized_answer(prompt, chosen) | |
| if not isinstance(rejected, str): | |
| raise ValueError(f"rejected should be an str but got {type(rejected)}") | |
| rejected_tokens = self.build_tokenized_answer(prompt, rejected) | |
| # Last prompt token might get merged by tokenizer and | |
| # it should not be included for generation if that happens | |
| prompt_len_input_ids = len(prompt_tokens["prompt_input_ids"]) | |
| chosen_prompt_len_input_ids = len(chosen_tokens["prompt_input_ids"]) | |
| rejected_prompt_len_input_ids = len(rejected_tokens["prompt_input_ids"]) | |
| prompt_len_input_ids = min(chosen_prompt_len_input_ids, rejected_prompt_len_input_ids) | |
| for k, v in prompt_tokens.items(): | |
| prompt_tokens[k] = v[:prompt_len_input_ids] | |
| # Make sure prompts only have one different token at most an | |
| # and length only differs by 1 at most | |
| num_diff_tokens = sum( | |
| [a != b for a, b in zip(chosen_tokens["prompt_input_ids"], rejected_tokens["prompt_input_ids"])] | |
| ) | |
| num_diff_len = abs(chosen_prompt_len_input_ids - rejected_prompt_len_input_ids) | |
| if num_diff_tokens > 1 or num_diff_len > 1: | |
| raise ValueError( | |
| "Chosen and rejected prompt_input_ids might only differ on the " | |
| "last token due to tokenizer merge ops." | |
| ) | |
| # add BOS token to head of prompt. Avoid adding if it's already there | |
| prompt_tokens, chosen_tokens, rejected_tokens = add_bos_token_if_needed( | |
| self.processing_class.bos_token_id, | |
| prompt_len_input_ids, | |
| prompt_tokens, | |
| chosen_prompt_len_input_ids, | |
| chosen_tokens, | |
| rejected_prompt_len_input_ids, | |
| rejected_tokens, | |
| ) | |
| # add EOS token to end of answer. Avoid adding if it's already there | |
| chosen_tokens, rejected_tokens = add_eos_token_if_needed( | |
| self.processing_class.eos_token_id, chosen_tokens, rejected_tokens | |
| ) | |
| longer_response_length = max(len(chosen_tokens["input_ids"]), len(rejected_tokens["input_ids"])) | |
| # if combined sequence is too long, truncate the prompt | |
| for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]: | |
| if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: | |
| if self.truncation_mode == "keep_start": | |
| for k in ["prompt_input_ids", "prompt_attention_mask"]: | |
| answer_tokens[k] = answer_tokens[k][: self.max_prompt_length] | |
| elif self.truncation_mode == "keep_end": | |
| for k in ["prompt_input_ids", "prompt_attention_mask"]: | |
| answer_tokens[k] = answer_tokens[k][-self.max_prompt_length :] | |
| else: | |
| raise ValueError(f"Unknown truncation mode: {self.truncation_mode}") | |
| # if that's still too long, truncate the response | |
| for answer_tokens in [chosen_tokens, rejected_tokens]: | |
| if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: | |
| for k in ["input_ids", "attention_mask"]: | |
| answer_tokens[k] = answer_tokens[k][: self.max_length - self.max_prompt_length] | |
| # Create labels | |
| chosen_sequence_tokens = { | |
| k: chosen_tokens[f"prompt_{k}"] + chosen_tokens[k] for k in ["input_ids", "attention_mask"] | |
| } | |
| rejected_sequence_tokens = { | |
| k: rejected_tokens[f"prompt_{k}"] + rejected_tokens[k] for k in ["input_ids", "attention_mask"] | |
| } | |
| chosen_sequence_tokens["labels"] = chosen_sequence_tokens["input_ids"][:] | |
| chosen_sequence_tokens["labels"][: len(chosen_tokens["prompt_input_ids"])] = [ | |
| self.label_pad_token_id | |
| ] * len(chosen_tokens["prompt_input_ids"]) | |
| rejected_sequence_tokens["labels"] = rejected_sequence_tokens["input_ids"][:] | |
| rejected_sequence_tokens["labels"][: len(rejected_tokens["prompt_input_ids"])] = [ | |
| self.label_pad_token_id | |
| ] * len(rejected_tokens["prompt_input_ids"]) | |
| for k, toks in { | |
| "chosen_": chosen_sequence_tokens, | |
| "rejected_": rejected_sequence_tokens, | |
| "": prompt_tokens, | |
| }.items(): | |
| for type_key, tokens in toks.items(): | |
| if type_key == "token_type_ids": | |
| continue | |
| batch[f"{k}{type_key}"] = tokens | |
| else: | |
| chosen_tokens = self.processing_class( | |
| chosen, truncation=True, max_length=self.max_completion_length, add_special_tokens=True | |
| ) | |
| rejected_tokens = self.processing_class( | |
| rejected, truncation=True, max_length=self.max_completion_length, add_special_tokens=True | |
| ) | |
| prompt_tokens = self.processing_class( | |
| prompt, truncation=True, max_length=self.max_prompt_length, add_special_tokens=True | |
| ) | |
| batch["chosen_labels"] = chosen_tokens["input_ids"] | |
| batch["rejected_labels"] = rejected_tokens["input_ids"] | |
| batch["prompt_input_ids"] = prompt_tokens["input_ids"] | |
| batch["prompt_attention_mask"] = prompt_tokens["attention_mask"] | |
| if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"): | |
| batch["rejected_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( | |
| labels=torch.tensor(batch["rejected_labels"]) | |
| ) | |
| batch["chosen_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( | |
| labels=torch.tensor(batch["chosen_labels"]) | |
| ) | |
| if is_torch_xla_available(): | |
| # Pad the sequences to global max_length to avoid TorchXLA recompilation | |
| for k in batch: | |
| if "labels" in k or self.is_encoder_decoder: | |
| pad_value = self.label_pad_token_id | |
| elif k.endswith("_input_ids"): | |
| pad_value = self.padding_value | |
| elif k.endswith("_attention_mask"): | |
| pad_value = 0 | |
| batch[k] = batch[k] + [pad_value] * (self.max_length - len(batch[k])) | |
| return batch | |
| def concatenated_inputs( | |
| batch: dict[str, Union[list, torch.LongTensor]], | |
| is_encoder_decoder: bool = False, | |
| label_pad_token_id: int = -100, | |
| padding_value: int = 0, | |
| device: Optional[torch.device] = None, | |
| ) -> dict[str, torch.LongTensor]: | |
| """Concatenate the chosen and rejected inputs into a single tensor. | |
| Args: | |
| batch: | |
| A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors | |
| of shape (batch_size, sequence_length). | |
| is_encoder_decoder: | |
| Whether the model is an encoder-decoder model. | |
| label_pad_token_id: | |
| The label pad token id. | |
| padding_value: | |
| The padding value to use for the concatenated inputs_ids. | |
| device: | |
| The device for the concatenated inputs. | |
| Returns: | |
| A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'. | |
| """ | |
| concatenated_batch = {} | |
| if is_encoder_decoder: | |
| max_length = max(batch["chosen_labels"].shape[1], batch["rejected_labels"].shape[1]) | |
| else: | |
| max_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1]) | |
| for k in batch: | |
| if k.startswith("chosen") and isinstance(batch[k], torch.Tensor): | |
| if "labels" in k or is_encoder_decoder: | |
| pad_value = label_pad_token_id | |
| elif k.endswith("_input_ids"): | |
| pad_value = padding_value | |
| elif k.endswith("_attention_mask"): | |
| pad_value = 0 | |
| concatenated_key = k.replace("chosen", "concatenated") | |
| concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value) | |
| for k in batch: | |
| if k.startswith("rejected") and isinstance(batch[k], torch.Tensor): | |
| if "labels" in k or is_encoder_decoder: | |
| pad_value = label_pad_token_id | |
| elif k.endswith("_input_ids"): | |
| pad_value = padding_value | |
| elif k.endswith("_attention_mask"): | |
| pad_value = 0 | |
| concatenated_key = k.replace("rejected", "concatenated") | |
| concatenated_batch[concatenated_key] = torch.cat( | |
| ( | |
| concatenated_batch[concatenated_key], | |
| pad_to_length(batch[k], max_length, pad_value=pad_value), | |
| ), | |
| dim=0, | |
| ).to(device=device) | |
| if is_encoder_decoder: | |
| concatenated_batch["concatenated_input_ids"] = batch["prompt_input_ids"].repeat(2, 1).to(device=device) | |
| concatenated_batch["concatenated_attention_mask"] = ( | |
| batch["prompt_attention_mask"].repeat(2, 1).to(device=device) | |
| ) | |
| return concatenated_batch | |
| def odds_ratio_loss( | |
| self, | |
| policy_chosen_logps: torch.FloatTensor, | |
| policy_rejected_logps: torch.FloatTensor, | |
| ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
| """Compute ORPO's odds ratio (OR) loss for a batch of policy and reference model log probabilities. | |
| Args: | |
| policy_chosen_logps: | |
| Log probabilities of the policy model for the chosen responses. Shape: (batch_size,) | |
| policy_rejected_logps: | |
| Log probabilities of the policy model for the rejected responses. Shape: (batch_size,) | |
| Returns: | |
| A tuple of three tensors: (losses, chosen_rewards, rejected_rewards). The losses tensor contains the ORPO | |
| loss for each example in the batch. The chosen_rewards and rejected_rewards tensors contain the rewards for | |
| the chosen and rejected responses, respectively. The log odds ratio of the chosen responses over the | |
| rejected responses ratio for logging purposes. The `log(sigmoid(log_odds_chosen))` for logging purposes. | |
| """ | |
| # Derived from Eqs. (4) and (7) from https://huggingface.co/papers/2403.07691 by using log identities and exp(log(P(y|x)) = P(y|x) | |
| log_odds = (policy_chosen_logps - policy_rejected_logps) - ( | |
| torch.log1p(-torch.exp(policy_chosen_logps)) - torch.log1p(-torch.exp(policy_rejected_logps)) | |
| ) | |
| ratio = F.logsigmoid(log_odds) | |
| losses = self.beta * ratio | |
| chosen_rewards = self.beta * (policy_chosen_logps.to(self.accelerator.device)).detach() | |
| rejected_rewards = self.beta * (policy_rejected_logps.to(self.accelerator.device)).detach() | |
| return losses, chosen_rewards, rejected_rewards, torch.mean(ratio), torch.mean(log_odds) | |
| def get_batch_logps( | |
| logits: torch.FloatTensor, | |
| labels: torch.LongTensor, | |
| average_log_prob: bool = False, | |
| label_pad_token_id: int = -100, | |
| is_encoder_decoder: bool = False, | |
| ) -> torch.FloatTensor: | |
| """Compute the log probabilities of the given labels under the given logits. | |
| Args: | |
| logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) | |
| labels: | |
| Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are | |
| ignored. Shape: (batch_size, sequence_length) | |
| average_log_prob: | |
| If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the | |
| log probabilities of the (non-masked) tokens. | |
| label_pad_token_id: The label pad token id. | |
| is_encoder_decoder: Whether the model is an encoder-decoder model. | |
| Returns: | |
| A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the | |
| given logits. | |
| """ | |
| if logits.shape[:-1] != labels.shape: | |
| raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") | |
| if not is_encoder_decoder: | |
| labels = labels[:, 1:].clone() | |
| logits = logits[:, :-1, :] | |
| loss_mask = labels != label_pad_token_id | |
| # dummy token; we'll ignore the losses on these tokens later | |
| labels = torch.where(labels == label_pad_token_id, 0, labels) | |
| per_token_logps = selective_log_softmax(logits, labels) | |
| if average_log_prob: | |
| return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) | |
| else: | |
| return (per_token_logps * loss_mask).sum(-1) | |
| def concatenated_forward( | |
| self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]] | |
| ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: | |
| """Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together. | |
| We do this to avoid doing two forward passes, because it's faster for FSDP. | |
| """ | |
| concatenated_batch = self.concatenated_inputs( | |
| batch, | |
| is_encoder_decoder=self.is_encoder_decoder, | |
| label_pad_token_id=self.label_pad_token_id, | |
| padding_value=self.padding_value, | |
| device=self.accelerator.device, | |
| ) | |
| len_chosen = batch["chosen_labels"].shape[0] | |
| model_kwargs = ( | |
| { | |
| "decoder_input_ids": self._shift_right(concatenated_batch["concatenated_labels"]), | |
| } | |
| if self.is_encoder_decoder | |
| else {} | |
| ) | |
| if self.aux_loss_enabled: | |
| model_kwargs["output_router_logits"] = True | |
| outputs = model( | |
| concatenated_batch["concatenated_input_ids"], | |
| attention_mask=concatenated_batch["concatenated_attention_mask"], | |
| use_cache=False, | |
| **model_kwargs, | |
| ) | |
| all_logits = outputs.logits | |
| def cross_entropy_loss(logits, labels): | |
| if not self.is_encoder_decoder: | |
| # Shift so that tokens < n predict n | |
| logits = logits[..., :-1, :].contiguous() | |
| labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = nn.CrossEntropyLoss() | |
| logits = logits.view(-1, logits.shape[-1]) | |
| labels = labels.view(-1) | |
| # Enable model parallelism | |
| labels = labels.to(logits.device) | |
| loss = loss_fct(logits, labels) | |
| return loss | |
| if self.is_encoder_decoder: | |
| labels = concatenated_batch["concatenated_labels"].clone() | |
| else: | |
| labels = concatenated_batch["concatenated_input_ids"].clone() | |
| attention_mask = concatenated_batch["concatenated_attention_mask"] | |
| labels = torch.where(attention_mask == 1, labels, self.label_pad_token_id) | |
| # orpo chosen nll loss is computed over the full prompt and response | |
| chosen_nll_loss = cross_entropy_loss(all_logits[:len_chosen], labels[:len_chosen]) | |
| all_logps = self.get_batch_logps( | |
| all_logits, | |
| concatenated_batch["concatenated_labels"], | |
| average_log_prob=True, | |
| is_encoder_decoder=self.is_encoder_decoder, | |
| label_pad_token_id=self.label_pad_token_id, | |
| ) | |
| chosen_logps = all_logps[:len_chosen] | |
| rejected_logps = all_logps[len_chosen:] | |
| if not self.is_encoder_decoder: | |
| chosen_logits = all_logits[:len_chosen, :-1, :] | |
| rejected_logits = all_logits[len_chosen:, :-1, :] | |
| else: | |
| chosen_logits = all_logits[:len_chosen] | |
| rejected_logits = all_logits[len_chosen:] | |
| if self.aux_loss_enabled: | |
| return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_nll_loss, outputs.aux_loss) | |
| return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_nll_loss) | |
| def get_batch_loss_metrics( | |
| self, | |
| model, | |
| batch: dict[str, Union[list, torch.LongTensor]], | |
| train_eval: Literal["train", "eval"] = "train", | |
| ): | |
| """Compute the ORPO loss and other metrics for the given batch of inputs for train or test.""" | |
| metrics = {} | |
| forward_output = self.concatenated_forward(model, batch) | |
| ( | |
| policy_chosen_logps, | |
| policy_rejected_logps, | |
| policy_chosen_logits, | |
| policy_rejected_logits, | |
| policy_nll_loss, | |
| ) = forward_output[:5] | |
| if self.aux_loss_enabled: | |
| aux_loss = forward_output[5] | |
| losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen = self.odds_ratio_loss( | |
| policy_chosen_logps, policy_rejected_logps | |
| ) | |
| # full ORPO loss | |
| loss = policy_nll_loss - losses.mean() | |
| reward_accuracies = (chosen_rewards > rejected_rewards).float() | |
| prefix = "eval_" if train_eval == "eval" else "" | |
| metrics[f"{prefix}rewards/chosen"] = self.accelerator.gather_for_metrics(chosen_rewards).mean() | |
| metrics[f"{prefix}rewards/rejected"] = self.accelerator.gather_for_metrics(rejected_rewards).mean() | |
| metrics[f"{prefix}rewards/accuracies"] = self.accelerator.gather_for_metrics(reward_accuracies).mean() | |
| metrics[f"{prefix}rewards/margins"] = self.accelerator.gather_for_metrics( | |
| chosen_rewards - rejected_rewards | |
| ).mean() | |
| metrics[f"{prefix}logps/rejected"] = self.accelerator.gather_for_metrics(policy_rejected_logps).detach().mean() | |
| metrics[f"{prefix}logps/chosen"] = self.accelerator.gather_for_metrics(policy_chosen_logps).detach().mean() | |
| metrics[f"{prefix}logits/rejected"] = self.accelerator.gather_for_metrics( | |
| policy_rejected_logits.detach().mean() | |
| ).mean() | |
| metrics[f"{prefix}logits/chosen"] = self.accelerator.gather_for_metrics( | |
| policy_chosen_logits.detach().mean() | |
| ).mean() | |
| metrics[f"{prefix}nll_loss"] = self.accelerator.gather_for_metrics(policy_nll_loss).detach().mean() | |
| metrics[f"{prefix}log_odds_ratio"] = self.accelerator.gather_for_metrics(log_odds_ratio).detach().mean() | |
| metrics[f"{prefix}log_odds_chosen"] = self.accelerator.gather_for_metrics(log_odds_chosen).detach().mean() | |
| if is_torch_xla_available(): | |
| xm.mark_step() # needed because .item() calls | |
| for k, v in metrics.items(): | |
| metrics[k] = v.item() | |
| if self.aux_loss_enabled: | |
| loss += self.aux_loss_coef * aux_loss | |
| return loss, metrics | |
| def compute_loss( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module], | |
| inputs: dict[str, Union[torch.Tensor, Any]], | |
| return_outputs=False, | |
| num_items_in_batch=None, | |
| ) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: | |
| compute_loss_context_manager = ( | |
| autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
| ) | |
| with compute_loss_context_manager: | |
| loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train") | |
| # Make sure to move the loss to the device the original accumulating loss is at back in the `Trainer` class: | |
| loss = loss.to(self.args.device) | |
| # force log the metrics | |
| self.store_metrics(metrics, train_eval="train") | |
| if return_outputs: | |
| return (loss, metrics) | |
| return loss | |
| def generate_from_model(self, model, batch: dict[str, torch.LongTensor]) -> str: | |
| """Generate samples from the model and reference model for the given batch of inputs.""" | |
| # If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with | |
| # the torch amp context manager as some hidden states are silently casted to full precision. | |
| generate_context_manager = ( | |
| autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
| ) | |
| with generate_context_manager: | |
| policy_output = model.generate( | |
| input_ids=batch["prompt_input_ids"], | |
| attention_mask=batch["prompt_attention_mask"], | |
| max_length=self.max_length, | |
| do_sample=True, | |
| pad_token_id=self.processing_class.pad_token_id, | |
| ) | |
| policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id) | |
| policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) | |
| return policy_output_decoded | |
| def prediction_step( | |
| self, | |
| model: Union[PreTrainedModel, nn.Module], | |
| inputs: dict[str, Union[torch.Tensor, Any]], | |
| prediction_loss_only: bool, | |
| ignore_keys: Optional[list[str]] = None, | |
| ): | |
| if not self.use_dpo_data_collator: | |
| warnings.warn( | |
| "prediction_step is only implemented for DPODataCollatorWithPadding, and you passed a datacollator that is different than " | |
| "DPODataCollatorWithPadding - you might see unexpected behavior. Alternatively, you can implement your own prediction_step method if you are using a custom data collator" | |
| ) | |
| if ignore_keys is None: | |
| if hasattr(model, "config"): | |
| ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) | |
| else: | |
| ignore_keys = [] | |
| prediction_context_manager = ( | |
| autocast(self.accelerator.device.type) if self._peft_has_been_casted_to_bf16 else nullcontext() | |
| ) | |
| with torch.no_grad(), prediction_context_manager: | |
| loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval") | |
| # force log the metrics | |
| self.store_metrics(metrics, train_eval="eval") | |
| if prediction_loss_only: | |
| return (loss.detach(), None, None) | |
| # logits for the chosen and rejected samples from model | |
| logits_dict = { | |
| "eval_logits/chosen": metrics["eval_logits/chosen"], | |
| "eval_logits/rejected": metrics["eval_logits/rejected"], | |
| } | |
| logits = [v for k, v in logits_dict.items() if k not in ignore_keys] | |
| logits = torch.tensor(logits, device=self.accelerator.device) | |
| labels = torch.zeros(logits.shape[0], device=self.accelerator.device) | |
| return (loss.detach(), logits, labels) | |
| def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: | |
| for key, value in metrics.items(): | |
| self._stored_metrics[train_eval][key].append(value) | |
| def evaluation_loop( | |
| self, | |
| dataloader: DataLoader, | |
| description: str, | |
| prediction_loss_only: Optional[bool] = None, | |
| ignore_keys: Optional[list[str]] = None, | |
| metric_key_prefix: str = "eval", | |
| ) -> EvalLoopOutput: | |
| """ | |
| Overriding built-in evaluation loop to store metrics for each batch. Prediction/evaluation loop, shared by | |
| `Trainer.evaluate()` and `Trainer.predict()`. | |
| Works both with or without labels. | |
| """ | |
| # Sample and save to game log if requested (for one batch to save time) | |
| if self.generate_during_eval: | |
| # Generate random indices within the range of the total number of samples | |
| num_samples = len(dataloader.dataset) | |
| random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) | |
| # Use dataloader.dataset.select to get the random batch without iterating over the DataLoader | |
| random_batch_dataset = dataloader.dataset.select(random_indices) | |
| random_batch = self.data_collator(random_batch_dataset) | |
| random_batch = self._prepare_inputs(random_batch) | |
| policy_output_decoded = self.generate_from_model(self.model, random_batch) | |
| table = pd.DataFrame( | |
| columns=["Prompt", "Policy"], | |
| data=[ | |
| [prompt, pol[len(prompt) :]] for prompt, pol in zip(random_batch["prompt"], policy_output_decoded) | |
| ], | |
| ) | |
| if "wandb" in self.args.report_to: | |
| wandb.log({"game_log": wandb.Table(data=table)}) | |
| if "comet_ml" in self.args.report_to: | |
| log_table_to_comet_experiment( | |
| name="game_log.csv", | |
| table=table, | |
| ) | |
| # Base evaluation | |
| initial_output = super().evaluation_loop( | |
| dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix | |
| ) | |
| return initial_output | |
| def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: | |
| """ | |
| Log `logs` on the various objects watching training, including stored metrics. | |
| Args: | |
| logs (`dict[str, float]`): | |
| The values to log. | |
| start_time (`float` or `None`, *optional*, defaults to `None`): | |
| Start time of the training. | |
| """ | |
| # logs either has 'loss' or 'eval_loss' | |
| train_eval = "train" if "loss" in logs else "eval" | |
| # Add averaged stored metrics to logs | |
| for key, metrics in self._stored_metrics[train_eval].items(): | |
| logs[key] = torch.tensor(metrics).mean().item() | |
| del self._stored_metrics[train_eval] | |
| return super().log(logs, start_time) | |
| def _shift_right(self, input_ids): | |
| if self.decoder_start_token_id is None: | |
| raise ValueError( | |
| "model.config.decoder_start_token_id has to be defined. It is usually set to the pad_token_id." | |
| ) | |
| # shift inputs to the right | |
| if is_torch_fx_proxy(input_ids): | |
| # Item assignment is not supported natively for proxies. | |
| shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), self.decoder_start_token_id) | |
| shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
| else: | |
| shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
| shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
| shifted_input_ids[..., 0] = self.decoder_start_token_id | |
| if self.pad_token_id is None: | |
| raise ValueError("model.config.pad_token_id has to be defined.") | |
| # replace possible -100 values in labels by `pad_token_id` | |
| shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id) | |
| return shifted_input_ids | |
| # Ensure the model card is saved along with the checkpoint | |
| def _save_checkpoint(self, model, trial): | |
| if self.args.hub_model_id is None: | |
| model_name = Path(self.args.output_dir).name | |
| else: | |
| model_name = self.args.hub_model_id.split("/")[-1] | |
| self.create_model_card(model_name=model_name) | |
| super()._save_checkpoint(model, trial) | |
| def create_model_card( | |
| self, | |
| model_name: Optional[str] = None, | |
| dataset_name: Optional[str] = None, | |
| tags: Union[str, list[str], None] = None, | |
| ): | |
| """ | |
| Creates a draft of a model card using the information available to the `Trainer`. | |
| Args: | |
| model_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the model. | |
| dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the dataset used for training. | |
| tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
| Tags to be associated with the model card. | |
| """ | |
| if not self.is_world_process_zero(): | |
| return | |
| if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
| base_model = self.model.config._name_or_path | |
| else: | |
| base_model = None | |
| # normalize `tags` to a mutable set | |
| if tags is None: | |
| tags = set() | |
| elif isinstance(tags, str): | |
| tags = {tags} | |
| else: | |
| tags = set(tags) | |
| if hasattr(self.model.config, "unsloth_version"): | |
| tags.add("unsloth") | |
| tags.update(self._tag_names) | |
| citation = textwrap.dedent("""\ | |
| @article{hong2024orpo, | |
| title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, | |
| author = {Jiwoo Hong and Noah Lee and James Thorne}, | |
| year = 2024, | |
| eprint = {arXiv:2403.07691} | |
| }""") | |
| model_card = generate_model_card( | |
| base_model=base_model, | |
| model_name=model_name, | |
| hub_model_id=self.hub_model_id, | |
| dataset_name=dataset_name, | |
| tags=tags, | |
| wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None, | |
| comet_url=get_comet_experiment_url(), | |
| trainer_name="ORPO", | |
| trainer_citation=citation, | |
| paper_title="ORPO: Monolithic Preference Optimization without Reference Model", | |
| paper_id="2403.07691", | |
| ) | |
| model_card.save(os.path.join(self.args.output_dir, "README.md")) | |