Spaces:
Runtime error
Runtime error
import os | |
import copy | |
import torch | |
import gradio | |
import gradio as gr | |
from PIL import Image | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
os.system("wget https://www.dropbox.com/s/grcragozd4x79zc/model_ok.pth") | |
model = torch.load("./model_ok.pth", map_location=device) | |
# img = Image.open(path).convert('RGB') | |
from torchvision import transforms | |
transforms2 = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
# img = transforms(img) | |
# img = img.unsqueeze(0) | |
model.eval() | |
labels = ['aunts','bees'] | |
# with torch.no_grad(): | |
# # preds = | |
# preds = model(img) | |
# score, indices = torch.max(preds, 1) | |
def recognize_digit(image): | |
image = transforms2(image) | |
image = image.unsqueeze(0) | |
# image = image.unsqueeze(0) | |
# image = image.reshape(1, -1) | |
# with torch.no_grad(): | |
# preds = | |
# img = image.reshape((-1, 3, 256, 256)) | |
preds = model(image).flatten() | |
# prediction = model.predict(image).tolist()[0] | |
# score, indices = torch.max(preds, 1) | |
# return {str(indices.item())} | |
return {labels[i]: float(preds[i]) for i in range(2)} | |
im = gradio.inputs.Image( | |
shape=(256, 256), image_mode="RGB", type="pil") | |
iface = gr.Interface( | |
recognize_digit, | |
im, | |
gradio.outputs.Label(num_top_classes=3), | |
live=True, | |
interpretation="default", | |
examples=[["images/cheetah1.jpg"], ["images/lion.jpg"]], | |
capture_session=True, | |
) | |
iface.test_launch() | |
iface.launch() |