SadTalker / inference.py
vinthony's picture
init
a22eb82
raw
history blame
6.69 kB
import torch
from time import strftime
import os, sys, time
from argparse import ArgumentParser
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
def main(args):
#torch.backends.cudnn.enabled = False
pic_path = args.source_image
audio_path = args.driven_audio
save_dir = os.path.join(args.result_dir, strftime("%Y_%m_%d_%H.%M.%S"))
os.makedirs(save_dir, exist_ok=True)
pose_style = args.pose_style
device = args.device
batch_size = args.batch_size
camera_yaw_list = args.camera_yaw
camera_pitch_list = args.camera_pitch
camera_roll_list = args.camera_roll
current_code_path = sys.argv[0]
current_root_path = os.path.split(current_code_path)[0]
os.environ['TORCH_HOME']=os.path.join(current_root_path, args.checkpoint_dir)
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
#init model
print(path_of_net_recon_model)
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
print(audio2pose_checkpoint)
print(audio2exp_checkpoint)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, device)
print(free_view_checkpoint)
print(mapping_checkpoint)
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
facerender_yaml_path, device)
#crop image and extract 3dmm from image
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
first_coeff_path, crop_pic_path = preprocess_model.generate(pic_path, first_frame_dir)
if first_coeff_path is None:
print("Can't get the coeffs of the input")
return
#audio2ceoff
batch = get_data(first_coeff_path, audio_path, device)
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style)
# 3dface render
if args.face3dvis:
from src.face3d.visualize import gen_composed_video
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
#coeff2video
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
batch_size, camera_yaw_list, camera_pitch_list, camera_roll_list,
expression_scale=args.expression_scale, still_mode=args.still)
animate_from_coeff.generate(data, save_dir, enhancer=args.enhancer)
video_name = data['video_name']
if args.enhancer is not None:
print(f'The generated video is named {video_name}_enhanced in {save_dir}')
else:
print(f'The generated video is named {video_name} in {save_dir}')
return os.path.join(save_dir, video_name+'.mp4'), os.path.join(save_dir, video_name+'.mp4')
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--driven_audio", default='./examples/driven_audio/japanese.wav', help="path to driven audio")
parser.add_argument("--source_image", default='./examples/source_image/art_0.png', help="path to source image")
parser.add_argument("--checkpoint_dir", default='./checkpoints', help="path to output")
parser.add_argument("--result_dir", default='./results', help="path to output")
parser.add_argument("--pose_style", type=int, default=0, help="input pose style from [0, 46)")
parser.add_argument("--batch_size", type=int, default=2, help="the batch size of facerender")
parser.add_argument("--expression_scale", type=float, default=1., help="the batch size of facerender")
parser.add_argument('--camera_yaw', nargs='+', type=int, default=[0], help="the camera yaw degree")
parser.add_argument('--camera_pitch', nargs='+', type=int, default=[0], help="the camera pitch degree")
parser.add_argument('--camera_roll', nargs='+', type=int, default=[0], help="the camera roll degree")
parser.add_argument('--enhancer', type=str, default=None, help="Face enhancer, [GFPGAN]")
parser.add_argument("--cpu", dest="cpu", action="store_true")
parser.add_argument("--face3dvis", action="store_true", help="generate 3d face and 3d landmarks")
parser.add_argument("--still", action="store_true")
# net structure and parameters
parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='not use')
parser.add_argument('--init_path', type=str, default=None, help='not Use')
parser.add_argument('--use_last_fc',default=False, help='zero initialize the last fc')
parser.add_argument('--bfm_folder', type=str, default='./checkpoints/BFM_Fitting/')
parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model')
# default renderer parameters
parser.add_argument('--focal', type=float, default=1015.)
parser.add_argument('--center', type=float, default=112.)
parser.add_argument('--camera_d', type=float, default=10.)
parser.add_argument('--z_near', type=float, default=5.)
parser.add_argument('--z_far', type=float, default=15.)
args = parser.parse_args()
if torch.cuda.is_available() and not args.cpu:
args.device = "cuda"
else:
args.device = "cpu"
main(args)