Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
| 3 |
-
from transformers import AutoImageProcessor,
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import base64
|
| 6 |
from io import BytesIO
|
|
@@ -9,11 +10,24 @@ from pydantic import BaseModel
|
|
| 9 |
|
| 10 |
# Nome do modelo no Hugging Face Hub
|
| 11 |
MODEL_NAME = "facebook/dinov2-small"
|
|
|
|
| 12 |
|
| 13 |
# Carregando processador e modelo
|
| 14 |
-
# Usamos
|
| 15 |
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Proje莽茫o para 512D
|
| 19 |
projection = nn.Linear(model.config.hidden_size, 512)
|
|
@@ -33,16 +47,10 @@ class ImageRequest(BaseModel):
|
|
| 33 |
@app.post("/embed")
|
| 34 |
async def get_embedding(request: ImageRequest):
|
| 35 |
try:
|
| 36 |
-
# Extrai a string Base64 do formato "data:image/png;base64,..."
|
| 37 |
header, img_base64 = request.image.split(",", 1)
|
| 38 |
-
|
| 39 |
-
# Decodifica a string Base64
|
| 40 |
image_data = base64.b64decode(img_base64)
|
| 41 |
-
|
| 42 |
-
# Abre a imagem com Pillow
|
| 43 |
image = Image.open(BytesIO(image_data))
|
| 44 |
|
| 45 |
-
# --- L贸gica de Infer锚ncia do Seu Script Original ---
|
| 46 |
inputs = processor(images=image, return_tensors="pt")
|
| 47 |
|
| 48 |
with torch.no_grad():
|
|
@@ -51,7 +59,6 @@ async def get_embedding(request: ImageRequest):
|
|
| 51 |
embedding = last_hidden_state[:, 0]
|
| 52 |
embedding_512 = projection(embedding)
|
| 53 |
|
| 54 |
-
# Converte para lista Python e retorna
|
| 55 |
return {"embedding": embedding_512.squeeze().tolist()}
|
| 56 |
|
| 57 |
except Exception as e:
|
|
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
| 3 |
+
from transformers import AutoImageProcessor, Dinov2Model
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
from PIL import Image
|
| 6 |
import base64
|
| 7 |
from io import BytesIO
|
|
|
|
| 10 |
|
| 11 |
# Nome do modelo no Hugging Face Hub
|
| 12 |
MODEL_NAME = "facebook/dinov2-small"
|
| 13 |
+
MODEL_FILE = "pytorch_model.bin" # O nome do arquivo do modelo
|
| 14 |
|
| 15 |
# Carregando processador e modelo
|
| 16 |
+
# Usamos o AutoImageProcessor, que funciona, e carregamos o modelo manualmente
|
| 17 |
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
| 18 |
+
|
| 19 |
+
# Baixa o arquivo do modelo para o cache local
|
| 20 |
+
try:
|
| 21 |
+
model_path = hf_hub_download(repo_id=MODEL_NAME, filename=MODEL_FILE)
|
| 22 |
+
|
| 23 |
+
# Carrega o modelo com o estado do arquivo baixado
|
| 24 |
+
model = Dinov2Model.from_pretrained(model_path)
|
| 25 |
+
except Exception as e:
|
| 26 |
+
# Caso a primeira tentativa falhe (por ex., com Safetensors)
|
| 27 |
+
MODEL_FILE = "model.safetensors"
|
| 28 |
+
model_path = hf_hub_download(repo_id=MODEL_NAME, filename=MODEL_FILE)
|
| 29 |
+
model = Dinov2Model.from_pretrained(MODEL_NAME, state_dict=torch.load(model_path), use_safetensors=True)
|
| 30 |
+
|
| 31 |
|
| 32 |
# Proje莽茫o para 512D
|
| 33 |
projection = nn.Linear(model.config.hidden_size, 512)
|
|
|
|
| 47 |
@app.post("/embed")
|
| 48 |
async def get_embedding(request: ImageRequest):
|
| 49 |
try:
|
|
|
|
| 50 |
header, img_base64 = request.image.split(",", 1)
|
|
|
|
|
|
|
| 51 |
image_data = base64.b64decode(img_base64)
|
|
|
|
|
|
|
| 52 |
image = Image.open(BytesIO(image_data))
|
| 53 |
|
|
|
|
| 54 |
inputs = processor(images=image, return_tensors="pt")
|
| 55 |
|
| 56 |
with torch.no_grad():
|
|
|
|
| 59 |
embedding = last_hidden_state[:, 0]
|
| 60 |
embedding_512 = projection(embedding)
|
| 61 |
|
|
|
|
| 62 |
return {"embedding": embedding_512.squeeze().tolist()}
|
| 63 |
|
| 64 |
except Exception as e:
|