vincenthugging commited on
Commit
ad8f2a1
1 Parent(s): ab8b4ee

feat: add model select area

Browse files
Files changed (5) hide show
  1. app.py +317 -4
  2. flux_lora.png +0 -0
  3. live_preview_helpers.py +166 -0
  4. loras.json +54 -0
  5. requirements.txt +6 -0
app.py CHANGED
@@ -1,7 +1,320 @@
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
  import gradio as gr
3
+ import json
4
+ import logging
5
+ import torch
6
+ from PIL import Image
7
+ import spaces
8
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
9
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
 
11
+ from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download,login
12
+ import copy
13
+ import random
14
+ import time
15
 
16
+
17
+ # get access token
18
+ access_token = os.environ.get("ACCESS_TOKEN")
19
+ # login with access token
20
+ if access_token:
21
+ login(token=access_token)
22
+ else:
23
+ print("warning: no access token found")
24
+
25
+
26
+ # Load LoRAs from JSON file
27
+ with open('loras.json', 'r') as f:
28
+ loras = json.load(f)
29
+
30
+ # Initialize the base model
31
+ dtype = torch.bfloat16
32
+ device = "cuda" if torch.cuda.is_available() else "cpu"
33
+ base_model = "black-forest-labs/FLUX.1-dev"
34
+
35
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
36
+ good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
37
+ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
38
+
39
+ MAX_SEED = 2**32-1
40
+
41
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
42
+
43
+ class calculateDuration:
44
+ def __init__(self, activity_name=""):
45
+ self.activity_name = activity_name
46
+
47
+ def __enter__(self):
48
+ self.start_time = time.time()
49
+ return self
50
+
51
+ def __exit__(self, exc_type, exc_value, traceback):
52
+ self.end_time = time.time()
53
+ self.elapsed_time = self.end_time - self.start_time
54
+ if self.activity_name:
55
+ print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
56
+ else:
57
+ print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
58
+
59
+ def update_selection(evt: gr.SelectData, width, height):
60
+ selected_lora = loras[evt.index]
61
+
62
+ new_placeholder = selected_lora.get('placeholder', f"Type a prompt for {selected_lora['title']}")
63
+ example_prompt = selected_lora.get('example_prompt', '')
64
+ lora_repo = selected_lora["repo"]
65
+ updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
66
+
67
+ # 分辨率切换
68
+ if "aspect" in selected_lora:
69
+ if selected_lora["aspect"] == "portrait":
70
+ width = 768
71
+ height = 1024
72
+ elif selected_lora["aspect"] == "landscape":
73
+ width = 1024
74
+ height = 768
75
+ else:
76
+ width = 1024
77
+ height = 1024
78
+
79
+ gr.Info("LoRA selection updated") # 添加这行来触发 UI 刷新
80
+
81
+ return (
82
+ gr.update(placeholder=new_placeholder, value=example_prompt),
83
+ updated_text,
84
+ evt.index,
85
+ width,
86
+ height,
87
+ )
88
+
89
+ @spaces.GPU(duration=70)
90
+ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
91
+ pipe.to("cuda")
92
+ generator = torch.Generator(device="cuda").manual_seed(seed)
93
+ with calculateDuration("Generating image"):
94
+ # Generate image
95
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
96
+ prompt=prompt_mash,
97
+ num_inference_steps=steps,
98
+ guidance_scale=cfg_scale,
99
+ width=width,
100
+ height=height,
101
+ generator=generator,
102
+ joint_attention_kwargs={"scale": lora_scale},
103
+ output_type="pil",
104
+ good_vae=good_vae,
105
+ ):
106
+ yield img
107
+
108
+ # 执行 run
109
+ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
110
+ if selected_index is None:
111
+ raise gr.Error("You must select a LoRA before proceeding.")
112
+ selected_lora = loras[selected_index]
113
+
114
+ lora_path = selected_lora["repo"]
115
+ trigger_word = selected_lora["trigger_word"]
116
+
117
+ if(trigger_word):
118
+ if "trigger_position" in selected_lora:
119
+ if selected_lora["trigger_position"] == "prepend":
120
+ prompt_mash = f"{trigger_word} {prompt}"
121
+ else:
122
+ prompt_mash = f"{prompt} {trigger_word}"
123
+ else:
124
+ prompt_mash = f"{trigger_word} {prompt}"
125
+ else:
126
+ prompt_mash = prompt
127
+
128
+ with calculateDuration("Unloading LoRA"):
129
+ pipe.unload_lora_weights()
130
+
131
+ # Load LoRA weights
132
+ with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
133
+ if "weights" in selected_lora:
134
+ pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
135
+ else:
136
+ pipe.load_lora_weights(lora_path)
137
+
138
+ # Set random seed for reproducibility
139
+ with calculateDuration("Randomizing seed"):
140
+ if randomize_seed:
141
+ seed = random.randint(0, MAX_SEED)
142
+
143
+ image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
144
+
145
+ # Consume the generator to get the final image
146
+ final_image = None
147
+ step_counter = 0
148
+ for image in image_generator:
149
+ step_counter+=1
150
+ final_image = image
151
+ progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
152
+ yield image, seed, gr.update(value=progress_bar, visible=True)
153
+
154
+ yield final_image, seed, gr.update(value=progress_bar, visible=False)
155
+
156
+ def get_huggingface_safetensors(link):
157
+ split_link = link.split("/")
158
+ if(len(split_link) == 2):
159
+ model_card = ModelCard.load(link)
160
+ base_model = model_card.data.get("base_model")
161
+ print(base_model)
162
+ if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
163
+ raise Exception("Not a FLUX LoRA!")
164
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
165
+ trigger_word = model_card.data.get("instance_prompt", "")
166
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
167
+ fs = HfFileSystem()
168
+ try:
169
+ list_of_files = fs.ls(link, detail=False)
170
+ for file in list_of_files:
171
+ if(file.endswith(".safetensors")):
172
+ safetensors_name = file.split("/")[-1]
173
+ if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
174
+ image_elements = file.split("/")
175
+ image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
176
+ except Exception as e:
177
+ print(e)
178
+ gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
179
+ raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
180
+ return split_link[1], link, safetensors_name, trigger_word, image_url
181
+
182
+ def check_custom_model(link):
183
+ if(link.startswith("https://")):
184
+ if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
185
+ link_split = link.split("huggingface.co/")
186
+ return get_huggingface_safetensors(link_split[1])
187
+ else:
188
+ return get_huggingface_safetensors(link)
189
+
190
+ def add_custom_lora(custom_lora):
191
+ global loras
192
+ if(custom_lora):
193
+ try:
194
+ title, repo, path, trigger_word, image = check_custom_model(custom_lora)
195
+ print(f"Loaded custom LoRA: {repo}")
196
+ card = f'''
197
+ <div class="custom_lora_card">
198
+ <span>Loaded custom LoRA:</span>
199
+ <div class="card_internal">
200
+ <img src="{image}" />
201
+ <div>
202
+ <h3>{title}</h3>
203
+ <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
204
+ </div>
205
+ </div>
206
+ </div>
207
+ '''
208
+ existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
209
+ if(not existing_item_index):
210
+ new_item = {
211
+ "image": image,
212
+ "title": title,
213
+ "repo": repo,
214
+ "weights": path,
215
+ "trigger_word": trigger_word
216
+ }
217
+ print(new_item)
218
+ existing_item_index = len(loras)
219
+ loras.append(new_item)
220
+
221
+ return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
222
+ except Exception as e:
223
+ gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
224
+ return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
225
+ else:
226
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
227
+
228
+ def remove_custom_lora():
229
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
230
+
231
+ run_lora.zerogpu = True
232
+
233
+ css = '''
234
+ #gen_btn{height: 100%}
235
+ #title{text-align: center}
236
+ #title h1{font-size: 3em; display:inline-flex; align-items:center}
237
+ #title img{width: 100px; margin-right: 0.5em}
238
+ #gallery .grid-wrap{height: 10vh}
239
+ #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
240
+ .card_internal{display: flex;height: 100px;margin-top: .5em}
241
+ .card_internal img{margin-right: 1em}
242
+ .styler{--form-gap-width: 0px !important}
243
+ #progress{height:30px}
244
+ #progress .generating{display:none}
245
+ .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
246
+ .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
247
+ '''
248
+ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
249
+ title = gr.HTML(
250
+ """<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
251
+ elem_id="title",
252
+ )
253
+ selected_index = gr.State(None)
254
+
255
+ with gr.Row():
256
+ with gr.Column(scale=3):
257
+ prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
258
+ with gr.Column(scale=1, elem_id="gen_column"):
259
+ generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
260
+
261
+ with gr.Row():
262
+ with gr.Column():
263
+ selected_info = gr.Markdown("")
264
+ gallery = gr.Gallery(
265
+ [(item["image"], item["title"]) for item in loras],
266
+ label="LoRA Gallery",
267
+ allow_preview=False,
268
+ columns=3,
269
+ elem_id="gallery"
270
+ )
271
+ with gr.Group():
272
+ custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="XLabs-AI/flux-RealismLora")
273
+ gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
274
+ custom_lora_info = gr.HTML(visible=False)
275
+ custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
276
+
277
+ with gr.Accordion("Advanced Settings", open=False):
278
+ with gr.Row():
279
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
280
+ steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
281
+
282
+ with gr.Row():
283
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
284
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
285
+
286
+ with gr.Row():
287
+ randomize_seed = gr.Checkbox(True, label="Randomize seed")
288
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
289
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
290
+
291
+ with gr.Column():
292
+ progress_bar = gr.Markdown(elem_id="progress",visible=False)
293
+ result = gr.Image(label="Generated Image")
294
+
295
+
296
+
297
+
298
+ gallery.select(
299
+ update_selection,
300
+ inputs=[width, height],
301
+ outputs=[prompt, selected_info, selected_index, width, height]
302
+ )
303
+ custom_lora.input(
304
+ add_custom_lora,
305
+ inputs=[custom_lora],
306
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
307
+ )
308
+ custom_lora_button.click(
309
+ remove_custom_lora,
310
+ outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
311
+ )
312
+ gr.on(
313
+ triggers=[generate_button.click, prompt.submit],
314
+ fn=run_lora,
315
+ inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
316
+ outputs=[result, seed, progress_bar]
317
+ )
318
+
319
+ app.queue()
320
+ app.launch()
flux_lora.png ADDED
live_preview_helpers.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ # Helper functions
7
+ def calculate_shift(
8
+ image_seq_len,
9
+ base_seq_len: int = 256,
10
+ max_seq_len: int = 4096,
11
+ base_shift: float = 0.5,
12
+ max_shift: float = 1.16,
13
+ ):
14
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
+ b = base_shift - m * base_seq_len
16
+ mu = image_seq_len * m + b
17
+ return mu
18
+
19
+ def retrieve_timesteps(
20
+ scheduler,
21
+ num_inference_steps: Optional[int] = None,
22
+ device: Optional[Union[str, torch.device]] = None,
23
+ timesteps: Optional[List[int]] = None,
24
+ sigmas: Optional[List[float]] = None,
25
+ **kwargs,
26
+ ):
27
+ if timesteps is not None and sigmas is not None:
28
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
+ if timesteps is not None:
30
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
+ timesteps = scheduler.timesteps
32
+ num_inference_steps = len(timesteps)
33
+ elif sigmas is not None:
34
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
+ timesteps = scheduler.timesteps
36
+ num_inference_steps = len(timesteps)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
+ timesteps = scheduler.timesteps
40
+ return timesteps, num_inference_steps
41
+
42
+ # FLUX pipeline function
43
+ @torch.inference_mode()
44
+ def flux_pipe_call_that_returns_an_iterable_of_images(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ prompt_2: Optional[Union[str, List[str]]] = None,
48
+ height: Optional[int] = None,
49
+ width: Optional[int] = None,
50
+ num_inference_steps: int = 28,
51
+ timesteps: List[int] = None,
52
+ guidance_scale: float = 3.5,
53
+ num_images_per_prompt: Optional[int] = 1,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ latents: Optional[torch.FloatTensor] = None,
56
+ prompt_embeds: Optional[torch.FloatTensor] = None,
57
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
+ max_sequence_length: int = 512,
62
+ good_vae: Optional[Any] = None,
63
+ ):
64
+ height = height or self.default_sample_size * self.vae_scale_factor
65
+ width = width or self.default_sample_size * self.vae_scale_factor
66
+
67
+ # 1. Check inputs
68
+ self.check_inputs(
69
+ prompt,
70
+ prompt_2,
71
+ height,
72
+ width,
73
+ prompt_embeds=prompt_embeds,
74
+ pooled_prompt_embeds=pooled_prompt_embeds,
75
+ max_sequence_length=max_sequence_length,
76
+ )
77
+
78
+ self._guidance_scale = guidance_scale
79
+ self._joint_attention_kwargs = joint_attention_kwargs
80
+ self._interrupt = False
81
+
82
+ # 2. Define call parameters
83
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
84
+ device = self._execution_device
85
+
86
+ # 3. Encode prompt
87
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
88
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
89
+ prompt=prompt,
90
+ prompt_2=prompt_2,
91
+ prompt_embeds=prompt_embeds,
92
+ pooled_prompt_embeds=pooled_prompt_embeds,
93
+ device=device,
94
+ num_images_per_prompt=num_images_per_prompt,
95
+ max_sequence_length=max_sequence_length,
96
+ lora_scale=lora_scale,
97
+ )
98
+ # 4. Prepare latent variables
99
+ num_channels_latents = self.transformer.config.in_channels // 4
100
+ latents, latent_image_ids = self.prepare_latents(
101
+ batch_size * num_images_per_prompt,
102
+ num_channels_latents,
103
+ height,
104
+ width,
105
+ prompt_embeds.dtype,
106
+ device,
107
+ generator,
108
+ latents,
109
+ )
110
+ # 5. Prepare timesteps
111
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
112
+ image_seq_len = latents.shape[1]
113
+ mu = calculate_shift(
114
+ image_seq_len,
115
+ self.scheduler.config.base_image_seq_len,
116
+ self.scheduler.config.max_image_seq_len,
117
+ self.scheduler.config.base_shift,
118
+ self.scheduler.config.max_shift,
119
+ )
120
+ timesteps, num_inference_steps = retrieve_timesteps(
121
+ self.scheduler,
122
+ num_inference_steps,
123
+ device,
124
+ timesteps,
125
+ sigmas,
126
+ mu=mu,
127
+ )
128
+ self._num_timesteps = len(timesteps)
129
+
130
+ # Handle guidance
131
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
132
+
133
+ # 6. Denoising loop
134
+ for i, t in enumerate(timesteps):
135
+ if self.interrupt:
136
+ continue
137
+
138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
139
+
140
+ noise_pred = self.transformer(
141
+ hidden_states=latents,
142
+ timestep=timestep / 1000,
143
+ guidance=guidance,
144
+ pooled_projections=pooled_prompt_embeds,
145
+ encoder_hidden_states=prompt_embeds,
146
+ txt_ids=text_ids,
147
+ img_ids=latent_image_ids,
148
+ joint_attention_kwargs=self.joint_attention_kwargs,
149
+ return_dict=False,
150
+ )[0]
151
+ # Yield intermediate result
152
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
153
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
154
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
155
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
156
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
157
+ torch.cuda.empty_cache()
158
+
159
+
160
+ # Final image using good_vae
161
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
162
+ latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
163
+ image = good_vae.decode(latents, return_dict=False)[0]
164
+ self.maybe_free_model_hooks()
165
+ torch.cuda.empty_cache()
166
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
loras.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "image": "https://cdn-uploads.huggingface.co/production/uploads/6413514705147e9f74df6fec/HOki0-bZbfVsmZ06vYQ3p.jpeg",
4
+ "title": "GYY",
5
+ "repo": "vincenthugging/flux-dev-lora-gyy",
6
+ "trigger_word": "gyy",
7
+ "example_prompt": "A photo of gyy,holding a sign that says 'Love is Love'",
8
+ "placeholder": "Trigger word: gyy",
9
+ "aspect": "portrait"
10
+ },
11
+ {
12
+ "image": "https://cdn-uploads.huggingface.co/production/uploads/6413514705147e9f74df6fec/bui1QnJKX0xv76ThfP-1d.png",
13
+ "title": "Leijun",
14
+ "repo": "vincenthugging/flux-lora-leijun",
15
+ "trigger_word": "leijun",
16
+ "example_prompt": "A photo of leijun, about 50 years old, at a product launch event",
17
+ "placeholder": "Trigger word: leijun",
18
+ "aspect": "portrait"
19
+ },
20
+ {
21
+ "image": "https://cdn-uploads.huggingface.co/production/uploads/6413514705147e9f74df6fec/iNzpVNTfg4HJ_PCtgdl-_.jpeg",
22
+ "title": "Ayaka miyoshi",
23
+ "repo": "vincenthugging/flux-dev-lora-miyoshi",
24
+ "trigger_word": "miyoshi",
25
+ "example_prompt": "A glamorous shot of miyoshi on the red carpet",
26
+ "placeholder": "Trigger word: miyoshi",
27
+ "aspect": "portrait"
28
+ },
29
+ {
30
+ "image": "https://cdn-uploads.huggingface.co/production/uploads/6413514705147e9f74df6fec/NmBmH6VZ0HV2OrCdeg18L.jpeg",
31
+ "title": "Liuyifei",
32
+ "repo": "vincenthugging/flux-dev-lora-lyf",
33
+ "trigger_word": "lyf",
34
+ "example_prompt": "A close-up portrait of lyf in a traditional Chinese outfit",
35
+ "placeholder": "Trigger word: lyf",
36
+ "aspect": "portrait"
37
+ },
38
+ {
39
+ "image": "https://cdn-uploads.huggingface.co/production/uploads/6413514705147e9f74df6fec/4sVKcWUlZ2oglX-8oFWKV.png",
40
+ "title": "Vincentyang ",
41
+ "repo": "vincenthugging/flux-dev-lora-vincentyang",
42
+ "trigger_word": "vincentyang",
43
+ "example_prompt": "Photo of vincentyang,young and handsome",
44
+ "placeholder": "Trigger word: vincentyang"
45
+ },
46
+
47
+ {
48
+ "image": "https://huggingface.co/Shakker-Labs/AWPortrait-FL/resolve/main/cover.jpeg",
49
+ "title": "AWPortrait FL",
50
+ "repo": "Shakker-Labs/AWPortrait-FL",
51
+ "weights": "AWPortrait-FL-lora.safetensors",
52
+ "trigger_word": ""
53
+ }
54
+ ]
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ git+https://github.com/huggingface/diffusers@3b604e8c384631e1f66a4fd9076ed5e7e2b08686
3
+ spaces
4
+ transformers
5
+ peft
6
+ sentencepiece