Spaces:
Sleeping
Sleeping
Commit
·
7955fdc
1
Parent(s):
775014f
initial commit
Browse files- README.md +1 -1
- app.py +97 -124
- example0.webp +0 -0
- requirements.txt +5 -4
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🖼
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: Flux Dev Leijun
|
3 |
emoji: 🖼
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
app.py
CHANGED
@@ -1,142 +1,115 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
import torch
|
|
|
|
|
|
|
7 |
|
8 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
else:
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
-
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
-
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
|
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
image = pipe(
|
31 |
-
prompt
|
32 |
-
|
33 |
-
guidance_scale
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
).images[0]
|
39 |
-
|
40 |
-
return image, seed
|
41 |
-
|
42 |
-
examples = [
|
43 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
44 |
-
"An astronaut riding a green horse",
|
45 |
-
"A delicious ceviche cheesecake slice",
|
46 |
-
]
|
47 |
-
|
48 |
-
css="""
|
49 |
-
#col-container {
|
50 |
-
margin: 0 auto;
|
51 |
-
max-width: 640px;
|
52 |
-
}
|
53 |
-
"""
|
54 |
-
|
55 |
-
with gr.Blocks(css=css) as demo:
|
56 |
-
|
57 |
-
with gr.Column(elem_id="col-container"):
|
58 |
-
gr.Markdown(f"""
|
59 |
-
# Text-to-Image Gradio Template
|
60 |
-
""")
|
61 |
-
|
62 |
-
with gr.Row():
|
63 |
-
|
64 |
-
prompt = gr.Text(
|
65 |
-
label="Prompt",
|
66 |
-
show_label=False,
|
67 |
-
max_lines=1,
|
68 |
-
placeholder="Enter your prompt",
|
69 |
-
container=False,
|
70 |
-
)
|
71 |
-
|
72 |
-
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
-
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
label="Height",
|
107 |
-
minimum=256,
|
108 |
-
maximum=MAX_IMAGE_SIZE,
|
109 |
-
step=32,
|
110 |
-
value=1024, #Replace with defaults that work for your model
|
111 |
-
)
|
112 |
|
113 |
-
with
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
minimum=0.0,
|
118 |
-
maximum=10.0,
|
119 |
-
step=0.1,
|
120 |
-
value=0.0, #Replace with defaults that work for your model
|
121 |
-
)
|
122 |
-
|
123 |
-
num_inference_steps = gr.Slider(
|
124 |
-
label="Number of inference steps",
|
125 |
-
minimum=1,
|
126 |
-
maximum=50,
|
127 |
-
step=1,
|
128 |
-
value=2, #Replace with defaults that work for your model
|
129 |
-
)
|
130 |
|
131 |
-
gr.
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
140 |
)
|
141 |
|
142 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import login
|
3 |
+
import spaces
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
import random
|
9 |
|
|
|
|
|
10 |
|
11 |
+
# get access token
|
12 |
+
access_token = os.environ.get("ACCESS_TOKEN")
|
13 |
+
|
14 |
+
# login with access token
|
15 |
+
if access_token:
|
16 |
+
login(token=access_token)
|
17 |
else:
|
18 |
+
print("warning: no access token found")
|
19 |
+
|
20 |
+
# Initialize the base model and specific LoRA
|
21 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
22 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
23 |
|
24 |
+
lora_repo = "vincenthugging/flux-lora-leijun"
|
25 |
+
trigger_word = "leijun" # Leave trigger_word blank if not used.
|
26 |
+
pipe.load_lora_weights(lora_repo)
|
27 |
|
28 |
+
pipe.to("cuda")
|
|
|
29 |
|
30 |
+
MAX_SEED = 2**32-1
|
|
|
31 |
|
32 |
+
@spaces.GPU(duration=80)
|
33 |
+
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
34 |
+
# Set random seed for reproducibility
|
35 |
if randomize_seed:
|
36 |
seed = random.randint(0, MAX_SEED)
|
37 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
38 |
+
|
39 |
+
# Update progress bar (0% saat mulai)
|
40 |
+
progress(0, "Starting image generation...")
|
41 |
+
|
42 |
+
# Generate image with progress updates
|
43 |
+
for i in range(1, steps + 1):
|
44 |
+
# Simulate the processing step (in a real scenario, you would integrate this with your image generation process)
|
45 |
+
if i % (steps // 10) == 0: # Update every 10% of the steps
|
46 |
+
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
47 |
+
|
48 |
+
# Generate image using the pipeline
|
49 |
image = pipe(
|
50 |
+
prompt=f"{prompt} {trigger_word}",
|
51 |
+
num_inference_steps=steps,
|
52 |
+
guidance_scale=cfg_scale,
|
53 |
+
width=width,
|
54 |
+
height=height,
|
55 |
+
generator=generator,
|
56 |
+
joint_attention_kwargs={"scale": lora_scale},
|
57 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# Final update (100%)
|
60 |
+
progress(100, "Completed!")
|
61 |
+
|
62 |
+
yield image, seed
|
63 |
+
|
64 |
+
# Example cached image and settings
|
65 |
+
example_image_path = "example0.webp" # Replace with the actual path to the example image
|
66 |
+
example_prompt = """photo of leijun, black t-shirt with Logo of Xiaomi Company , face detailed, fit body,
|
67 |
+
looking at the viewer,holding a handwritten white sign with orange text that says, “Are you OK ?”,
|
68 |
+
light background,studio light"""
|
69 |
+
|
70 |
+
# example settings
|
71 |
+
example_cfg_scale = 3.5
|
72 |
+
example_steps = 28
|
73 |
+
example_width = 1024
|
74 |
+
example_height = 1024
|
75 |
+
example_seed = None
|
76 |
+
example_lora_scale = 0.85
|
77 |
+
|
78 |
+
def load_example():
|
79 |
+
# Load example image from file
|
80 |
+
example_image = Image.open(example_image_path)
|
81 |
+
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
|
82 |
+
|
83 |
+
with gr.Blocks() as app:
|
84 |
+
gr.Markdown("# Flux Image Generator for Leijun")
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column(scale=3):
|
87 |
+
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5)
|
88 |
+
generate_button = gr.Button("Generate")
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Advanced options,with default values
|
91 |
+
with gr.Accordion("Advanced options", open=False):
|
92 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
|
93 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
|
94 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
|
95 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
|
96 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
97 |
|
98 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
|
99 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
with gr.Column(scale=1):
|
102 |
+
result = gr.Image(label="Generated Image")
|
103 |
+
gr.Markdown("Generate images using Lora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")
|
104 |
+
|
105 |
+
# Automatically load example data and image when the interface is launched
|
106 |
+
app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
|
107 |
+
|
108 |
+
generate_button.click(
|
109 |
+
run_lora,
|
110 |
+
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
|
111 |
+
outputs=[result, seed]
|
112 |
)
|
113 |
|
114 |
+
app.queue()
|
115 |
+
app.launch()
|
example0.webp
ADDED
![]() |
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
-
accelerate
|
2 |
-
diffusers
|
3 |
-
invisible_watermark
|
4 |
torch
|
|
|
|
|
5 |
transformers
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
torch
|
2 |
+
diffusers
|
3 |
+
spaces
|
4 |
transformers
|
5 |
+
peft
|
6 |
+
sentencepiece
|
7 |
+
huggingface_hub
|